单选题定义f(x)是R上的奇函数且为减函数,若m+n≥0,给出下列不等式:(1)f(m
答案:2 悬赏:40 手机版
解决时间 2021-03-26 19:41
- 提问者网友:椧運幽默
- 2021-03-26 02:56
单选题
定义f(x)是R上的奇函数且为减函数,若m+n≥0,给出下列不等式:(1)f(m)?f(-m)≤0;(2)f(m)+f(n)≥f(-m)+f(-n);(3)f(n)?f(-n)≥0;(4)f(m)+f(n)≤f(-m)+f(-n)其中正确的是A.(1)和(4)B.(2)和(3)C.(1)和(3)D.(2)和(4)
最佳答案
- 五星知识达人网友:轻雾山林
- 2020-05-23 06:35
A解析分析:由奇函数性质得f(-x)=-f(x),据此可判断(1)(3)的正确性;由m+n≥0,得m≥-n,利用函数单调性可比较f(m)与f(-n)大小,同理可比较f(n)与f(-m)的大小,结合不等式性质可判断(2)(4)的正确性;解答:因为f(x)为R上的奇函数,所以f(m)?f(-m)=f(m)?[-f(m)]=-[f(m)]2≤0,故(1)正确;由(1)的正确性可知(3)错误;由m+n≥0,得m≥-n,因为f(x)单调递减,所以f(m)≤f(-n),同理可得f(n)≤f(-m),所以f(m)+f(n)≤f(-m)+f(-n),故(4)正确;由(4)正确性可得(2)错误;故选A.点评:本题考查函数奇偶性、单调性及其应用,考查学生灵活运用所学知识分析解决问题的能力,属中档题.
全部回答
- 1楼网友:枭雄戏美人
- 2021-01-07 19:24
感谢回答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯