根据题意结合图形填空:已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.
答:是,理由如下:
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(________)
∴AD∥EG(________)
∴∠1=∠E(________)
∠2=∠3(________)
∵∠E=∠3(已知)
∴(∠1)=(∠2)(等量代换)
∴AD是∠BAC的平分线(________)
根据题意结合图形填空:已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.答:是,理由如下:∵AD⊥BC,EG⊥
答案:2 悬赏:50 手机版
解决时间 2021-04-13 09:04
- 提问者网友:佞臣
- 2021-04-12 16:15
最佳答案
- 五星知识达人网友:像个废品
- 2021-04-12 17:37
垂直定义 同位角相等,两条直线平行 两条直线平行,同位角相等 两条直线平行,内错角相等 角平分线定义解析分析:首先要根据平行线的判定证明两条直线平行,再根据平行线的性质证明有关的角相等,运用等量代换的方法证明AD所分的两个角相等,即可证明.解答:是,理由如下:
∵AD⊥BC,EG⊥BC(已知),
∴∠4=∠5=90°(垂直定义),
∴AD∥EG(同位角相等,两条直线平行),
∴∠1=∠E(两条直线平行,同位角相等),
∠2=∠3(两条直线平行,内错角相等);
∵∠E=∠3(已知),
∴∠1=∠2(等量代换),
∴AD是∠BAC的平分线(角平分线定义).点评:本题主要考查证明过程中理论依据的填写,训练学生证明步骤的书写,比较简单.
∵AD⊥BC,EG⊥BC(已知),
∴∠4=∠5=90°(垂直定义),
∴AD∥EG(同位角相等,两条直线平行),
∴∠1=∠E(两条直线平行,同位角相等),
∠2=∠3(两条直线平行,内错角相等);
∵∠E=∠3(已知),
∴∠1=∠2(等量代换),
∴AD是∠BAC的平分线(角平分线定义).点评:本题主要考查证明过程中理论依据的填写,训练学生证明步骤的书写,比较简单.
全部回答
- 1楼网友:人類模型
- 2021-04-12 18:39
这个问题我还想问问老师呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯