过抛物线x^2=2py(p>0)的焦点F作倾斜角为30°的直线与抛物线分别交与AB两点
A在y轴左侧)则|AF|/|FB|=?
过抛物线x^2=2py(p>0)的焦点F作倾斜角为30°的直线与抛物线分别交与AB两点
答案:1 悬赏:60 手机版
解决时间 2021-05-22 02:47
- 提问者网友:了了无期
- 2021-05-21 07:44
最佳答案
- 五星知识达人网友:鸠书
- 2021-05-21 09:14
若直线倾斜角为α,则其斜率为tanα,其方程为y-(p/2)=tanαx;
联立x²=2py;消去y得x-2ptanαx-p²=0;解得x=((sinα±1)/cosα)p;
∵A点在y轴左侧,∴|AF|/|FB|=|((sinα-1)/cosα)p|/((sinα+1)/cosα)p
=|sinα-1|/|sinα+1|=(1-sinα)/(1+sinα);
即|AF|/|FB|=(1-sinα)/(1+sinα)=(1-sin30°)/(1+sin30°)=1/3.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯