求四点共圆的条件?
答案:1 悬赏:0 手机版
解决时间 2021-04-13 02:21
- 提问者网友:黑米和小志
- 2021-04-12 22:46
求四点共圆的条件?
最佳答案
- 五星知识达人网友:春色三分
- 2021-04-12 23:55
首先这四个点是在同一平面上,你在平面上只要能找到一个圆,使这个圆通过这四个点,就可以称为这四点共圆。
专业点就是:同一平面上的四个点,如果存在一个圆通过这四个点,那么就称四点共圆。
你试想,圆上任意两点相连得到线段构成弦,弦的垂直平分线必定通过圆心。于是就可以得到四点共圆的一个判定定理:
A,B,C,D四点在同一平面上,如果AB,BC,CD这三条线段的垂直平分线交于一点,那么这四点共圆,得到交点就是圆心。
证明:设交点为O,则O在AB,BC,CD这三条线段的垂直平分线上,根据垂直平分线上的点到线段两端点的距离想等就有:OA=OB=OC=OD,于是以O为心,OA为半径的圆必定通过A,B,C,D。得到了圆,这四点共圆。
之所以要研究四点共圆,是因为3点必定共圆,你可以用上面的思路证明的,只是还要用到"三角形三条边的垂直平分线交于一点",这里求得的圆心就是“外心”。
专业点就是:同一平面上的四个点,如果存在一个圆通过这四个点,那么就称四点共圆。
你试想,圆上任意两点相连得到线段构成弦,弦的垂直平分线必定通过圆心。于是就可以得到四点共圆的一个判定定理:
A,B,C,D四点在同一平面上,如果AB,BC,CD这三条线段的垂直平分线交于一点,那么这四点共圆,得到交点就是圆心。
证明:设交点为O,则O在AB,BC,CD这三条线段的垂直平分线上,根据垂直平分线上的点到线段两端点的距离想等就有:OA=OB=OC=OD,于是以O为心,OA为半径的圆必定通过A,B,C,D。得到了圆,这四点共圆。
之所以要研究四点共圆,是因为3点必定共圆,你可以用上面的思路证明的,只是还要用到"三角形三条边的垂直平分线交于一点",这里求得的圆心就是“外心”。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯