为什么这样去推导尺缩效应的公式会丢失一个二次根
答案:1 悬赏:30 手机版
解决时间 2021-05-04 07:39
- 提问者网友:我是我
- 2021-05-03 21:28
设火车车箱静止时的长度为L,中间的光源距前壁和后壁为L/2.火车以速度v在铁轨上做匀速直线运动,我们通过某种方法测出运动的火车的长为L0,中间的光源到前后壁即为L0/2.以路基作为参考系,光源同时发出的两束光,到达前壁所用的时间为t1=(L0/2 +v*t1)/C,到后壁为t2=(L0/2 -v*t2)/C则光到达后壁比到达前壁要早T=t2-t1.这样我们去测在静止时长为L,运动时速度为v的车箱时,会先读后壁的数值,且比读前壁时要早T,这样测得车箱长L0=L-v*T整理后L0=L*(1-v^2/C^2)
最佳答案
- 五星知识达人网友:躲不过心动
- 2021-05-03 22:10
洛伦兹变换的简明推导
事实一
相对性原理。物理定律在所有的惯性系(惯性系就是能让牛顿第一定律成立的参考系)中都是相同的。也就是说,不同惯性系的物理方程形式是相同的。比如,在低速条件下,牛顿三定律的公式在地球惯性系中是这样写的,在太阳惯性系中也是一样的写法
事实二
光速不变。在所有惯性系中,真空中的光速等于恒定值c。光速大小与参考系之间的相对运动无关,也与光源、观察者的运动无关
推导过程
现在根据这两个事实,推导坐标的变换式 设想有两个惯性坐标系分别叫S系、S'系,S'系的原点O‘相对S系的原点O以速率v沿x轴正方向运动。任意一事件在S系、S'系中的时空坐标分别为(x,y,z,t)、(x',y',z',t')。两惯性系重合时,分别开始计时 若x=0,则x'+vt'=0。这是变换须满足的一个必要条件,故猜测任意一事件的坐标从S'系到S系的变换为 x=γ(x'+vt') (1) 式中引入了常数γ,命名为洛伦兹因子 (由于这个变换是猜测的,显然需要对其推导出的结论进行实验以验证其正确性) 在此猜测上,引入相对性原理,即不同惯性系的物理方程的形式应相同。故上述事件坐标从S系到S'系的变换为 x'=γ(x-vt) (2) y与y'、z与z'的变换可以直接得出,即 y'=y (3) z'=z (4) 把(2)代入(1),解t'得 t'=γt+(1-γ^2)x/γv (5) 在上面推导的基础上,引入光速不变原理,以寻求γ的取值 设想由重合的原点O(O')发出一束沿x轴正方向的光,设该光束的波前坐标为(X,Y,Z,T)、(X',Y',Z',T')。根据光速不变,有 X=cT (6) X’=cT' (7) (1)(2)相乘得 xx'=γ^2( xx'-x'vt+xvt'-v^2*tt') (8) 以波前这一事件作为对象,则(8)写成 XX'=γ^2(XX'-X'VT+XVT'-V^2*TT') (9) (6)(7)代入(9),化简得洛伦兹因子 γ=[1-(v/c) ^2]^(-1/2) (10) (10)代入(5),化简得 t'=γ(t-vx/c^2) (11) 把(2)、(3)、(4)、(11)放在一起,即S系到S'系的洛伦兹变换 x'=γ(x-vt), y'=y, z'=z, t'=γ(t-vx/c^2) (12) 根据相对性原理,由(12)得S'系到S系的洛伦兹变换 x=γ(x'+vt'), y=y', z=z', t=γ(t'+vx'/c^2) (13) 下面求洛伦兹变换下的速度变换关系 考虑分别从S系和S'系观测一质点P的运动速度。设在S系和S'系中分别测得的速度为u(j,n,m)和u'(j',n',m') 由(12)对t'求导即得 S系到S'系的洛伦兹速度变换 j'=(j-v)/(1-vj/c^2), n'=n/[γ(1-vj/c^2)^-1], m'=m/[γ(1-vj/c^2)^-1] (14) 根据相对性原理,由(14)得S'系到S系的洛伦兹速度变换 j=(j'+v)/(1+vj'/c^2), n=n'/[γ(1+vj'/c^2)^-1], m=m'/[γ(1+vj'/c^2)^-1] (15) 洛伦兹变换结合动量定理和质量守恒定律,可以得出狭义相对论的所有定量结论。这些结论得到实验验证后,也就说明了狭义相对论的正确性
事实一
相对性原理。物理定律在所有的惯性系(惯性系就是能让牛顿第一定律成立的参考系)中都是相同的。也就是说,不同惯性系的物理方程形式是相同的。比如,在低速条件下,牛顿三定律的公式在地球惯性系中是这样写的,在太阳惯性系中也是一样的写法
事实二
光速不变。在所有惯性系中,真空中的光速等于恒定值c。光速大小与参考系之间的相对运动无关,也与光源、观察者的运动无关
推导过程
现在根据这两个事实,推导坐标的变换式 设想有两个惯性坐标系分别叫S系、S'系,S'系的原点O‘相对S系的原点O以速率v沿x轴正方向运动。任意一事件在S系、S'系中的时空坐标分别为(x,y,z,t)、(x',y',z',t')。两惯性系重合时,分别开始计时 若x=0,则x'+vt'=0。这是变换须满足的一个必要条件,故猜测任意一事件的坐标从S'系到S系的变换为 x=γ(x'+vt') (1) 式中引入了常数γ,命名为洛伦兹因子 (由于这个变换是猜测的,显然需要对其推导出的结论进行实验以验证其正确性) 在此猜测上,引入相对性原理,即不同惯性系的物理方程的形式应相同。故上述事件坐标从S系到S'系的变换为 x'=γ(x-vt) (2) y与y'、z与z'的变换可以直接得出,即 y'=y (3) z'=z (4) 把(2)代入(1),解t'得 t'=γt+(1-γ^2)x/γv (5) 在上面推导的基础上,引入光速不变原理,以寻求γ的取值 设想由重合的原点O(O')发出一束沿x轴正方向的光,设该光束的波前坐标为(X,Y,Z,T)、(X',Y',Z',T')。根据光速不变,有 X=cT (6) X’=cT' (7) (1)(2)相乘得 xx'=γ^2( xx'-x'vt+xvt'-v^2*tt') (8) 以波前这一事件作为对象,则(8)写成 XX'=γ^2(XX'-X'VT+XVT'-V^2*TT') (9) (6)(7)代入(9),化简得洛伦兹因子 γ=[1-(v/c) ^2]^(-1/2) (10) (10)代入(5),化简得 t'=γ(t-vx/c^2) (11) 把(2)、(3)、(4)、(11)放在一起,即S系到S'系的洛伦兹变换 x'=γ(x-vt), y'=y, z'=z, t'=γ(t-vx/c^2) (12) 根据相对性原理,由(12)得S'系到S系的洛伦兹变换 x=γ(x'+vt'), y=y', z=z', t=γ(t'+vx'/c^2) (13) 下面求洛伦兹变换下的速度变换关系 考虑分别从S系和S'系观测一质点P的运动速度。设在S系和S'系中分别测得的速度为u(j,n,m)和u'(j',n',m') 由(12)对t'求导即得 S系到S'系的洛伦兹速度变换 j'=(j-v)/(1-vj/c^2), n'=n/[γ(1-vj/c^2)^-1], m'=m/[γ(1-vj/c^2)^-1] (14) 根据相对性原理,由(14)得S'系到S系的洛伦兹速度变换 j=(j'+v)/(1+vj'/c^2), n=n'/[γ(1+vj'/c^2)^-1], m=m'/[γ(1+vj'/c^2)^-1] (15) 洛伦兹变换结合动量定理和质量守恒定律,可以得出狭义相对论的所有定量结论。这些结论得到实验验证后,也就说明了狭义相对论的正确性
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯