"英国海岸线是不确定的"这句话的正确含义是什么?
答案:2 悬赏:30 手机版
解决时间 2021-12-25 13:12
- 提问者网友:爱了却不能说
- 2021-12-24 18:58
"英国海岸线是不确定的"这句话的正确含义是什么?
最佳答案
- 五星知识达人网友:冷風如刀
- 2021-12-24 19:07
1967年在国际权威的美国《科学》杂志上发表了一篇划进代的的论文,它的标题就是《英国的海岸线有多长?统计自相似性与分数维数》中,文章作者曼德布罗( Beonit Mandelbrot)是一位当代美籍法国数学家和计算机专家,当时正在纽约的IBM公司的活特生研究中心工作, 而他的答案却让你大吃一惊:他认为,无论你做得多么认真细致,你都不可能得到准确答案,因为根本就不会有准确的答案。英国的海岸线长度是不确定的!它依赖于测量时所用的尺度.
原来,海岸线由于海水长年的冲涮和陆地自身的运动,形成了大大小小的海湾和海岬,弯弯曲曲极不规则.
假如你乘一架飞机在10000m 的高空沿海岸线飞行测量,同时不断拍摄海岸照片,然后按适当的比例尺并计算这些照片显示的海岸总长度,其答案是否精确呢?否!因为,你在高空不可能区别许多的小海湾和小海峡。
如果你改乘一架小飞机在500m高处重复上述的拍摄和测量,你就会看清许多原来没有看到的细部,而你的答案就会大大超过上次的答数。
现在再假设你就在地面上,测量其长度时如以公里为单位,则几米到几百米的弯曲就会被忽略不能计入在内,设此时得长度L1;用长度为10m的量规来测量海岸线的长度,那么那些在空中看不清的拐弯处就会使海岸线长度变得更大,L2>L1;如如果你改到长度为1m的量规,上面忽略了的弯曲都可计入,结果将继续增大,但仍有几厘米、几十厘米的弯曲被忽略,此时得出的长度L3>L2>L1;如此等等,采用的量度越精密,海岸线就显露出更多的细节,而你获得的海岸线长度就越大(图19).可以设想,用分子、原子量级的尺度为单位时,测得的长度将是一个天文数字.这虽然没有什么实际意义,但说明随测量单位变得无穷小,海岸线长度会变得无穷大,因而是不确定的.所以长度已不是海岸线的最好的定量特征,为了描述海岸线的特点,需要寻找另外的参量.
当然就人力而言,你可能会用1m 量规测量后就停止测量,而物理学家可能会认为这种测量过程必须在原子层次上达到一个理论的极限,但从数学家理想化的观点看,这种越来越精细的测量过程则可以无限继续下去,这就意味着相应的测量结果将无限地增大,也就是说,所谓海岸线的长度并没有确切的数学定义,而通常我们谈论的海岸线长度只是在某种标度下的度量值。 Benoit Mandelbrot 说 ,其实任何海岸线的长度在某个意义下皆为无限长 ,或者说,海岸线的长度是依量尺的长短而定。
海岸线长度问题,曼德尔布罗特最初是在英国数学家理查逊(Lewis Fry Richardson)的遗稿中一篇鲜为人知的晦涩的论文中遇到的。这个问题引起他极大的兴趣,并进行了潜心的研究.其中他所摸索的一大堆争议性主题,后来成为混沌理论(Chaos Theory)的一部份。当初 Lewis Fry Richardson 为了想要了解一些国家锯齿形的海岸线长度,所以翻阅西班牙、葡萄牙、比利时与荷兰的百科全书,他发现书上在估计同一个国家的海岸线长度时,竟然有百分之二十的误差,Lewis Fry Richardson 指出 :这种误差是因为他们使用不同长度的量尺所导致的。他同时发现海岸线长度 L 与测量尺度 s 的关系如下,其中,值得注意的是 log(1/s) 与 log(L) 呈线性关系,其斜率为一定值 d:, 即,其中lgk≈3.7,d≈0.24.很明显,如果我们以对lgL作图,所得到的直线斜率为d。
曼德尔布罗特独具慧眼地发现了1961年理查逊得出的边界长度的经验公式 L (r)= Kr1-a中的a就可以作为描述海岸线特征的这种参量,他称之为“量规维数”......余下全文>>
原来,海岸线由于海水长年的冲涮和陆地自身的运动,形成了大大小小的海湾和海岬,弯弯曲曲极不规则.
假如你乘一架飞机在10000m 的高空沿海岸线飞行测量,同时不断拍摄海岸照片,然后按适当的比例尺并计算这些照片显示的海岸总长度,其答案是否精确呢?否!因为,你在高空不可能区别许多的小海湾和小海峡。
如果你改乘一架小飞机在500m高处重复上述的拍摄和测量,你就会看清许多原来没有看到的细部,而你的答案就会大大超过上次的答数。
现在再假设你就在地面上,测量其长度时如以公里为单位,则几米到几百米的弯曲就会被忽略不能计入在内,设此时得长度L1;用长度为10m的量规来测量海岸线的长度,那么那些在空中看不清的拐弯处就会使海岸线长度变得更大,L2>L1;如如果你改到长度为1m的量规,上面忽略了的弯曲都可计入,结果将继续增大,但仍有几厘米、几十厘米的弯曲被忽略,此时得出的长度L3>L2>L1;如此等等,采用的量度越精密,海岸线就显露出更多的细节,而你获得的海岸线长度就越大(图19).可以设想,用分子、原子量级的尺度为单位时,测得的长度将是一个天文数字.这虽然没有什么实际意义,但说明随测量单位变得无穷小,海岸线长度会变得无穷大,因而是不确定的.所以长度已不是海岸线的最好的定量特征,为了描述海岸线的特点,需要寻找另外的参量.
当然就人力而言,你可能会用1m 量规测量后就停止测量,而物理学家可能会认为这种测量过程必须在原子层次上达到一个理论的极限,但从数学家理想化的观点看,这种越来越精细的测量过程则可以无限继续下去,这就意味着相应的测量结果将无限地增大,也就是说,所谓海岸线的长度并没有确切的数学定义,而通常我们谈论的海岸线长度只是在某种标度下的度量值。 Benoit Mandelbrot 说 ,其实任何海岸线的长度在某个意义下皆为无限长 ,或者说,海岸线的长度是依量尺的长短而定。
海岸线长度问题,曼德尔布罗特最初是在英国数学家理查逊(Lewis Fry Richardson)的遗稿中一篇鲜为人知的晦涩的论文中遇到的。这个问题引起他极大的兴趣,并进行了潜心的研究.其中他所摸索的一大堆争议性主题,后来成为混沌理论(Chaos Theory)的一部份。当初 Lewis Fry Richardson 为了想要了解一些国家锯齿形的海岸线长度,所以翻阅西班牙、葡萄牙、比利时与荷兰的百科全书,他发现书上在估计同一个国家的海岸线长度时,竟然有百分之二十的误差,Lewis Fry Richardson 指出 :这种误差是因为他们使用不同长度的量尺所导致的。他同时发现海岸线长度 L 与测量尺度 s 的关系如下,其中,值得注意的是 log(1/s) 与 log(L) 呈线性关系,其斜率为一定值 d:, 即,其中lgk≈3.7,d≈0.24.很明显,如果我们以对lgL作图,所得到的直线斜率为d。
曼德尔布罗特独具慧眼地发现了1961年理查逊得出的边界长度的经验公式 L (r)= Kr1-a中的a就可以作为描述海岸线特征的这种参量,他称之为“量规维数”......余下全文>>
全部回答
- 1楼网友:酒者煙囻
- 2021-12-24 19:40
我明天再问问老师,叫他解释下这个问题
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯