【t sina】已知向量a=(12)b=(cosasina)设m=a tb(t为是实数)....
答案:2 悬赏:30 手机版
解决时间 2021-02-18 20:53
- 提问者网友:难遇难求
- 2021-02-18 08:10
【t sina】已知向量a=(12)b=(cosasina)设m=a tb(t为是实数)....
最佳答案
- 五星知识达人网友:独钓一江月
- 2021-02-18 08:56
【答案】 m=a+tb=(1,2)+t(cosa,sina)=(1+tcosa,2+tsina)当a=π/4时,
则m=(1+(t根号2)/2,2+(t根号2)/2),
于是|m|^2=[1+(t根号2)/2]^2+[2+(t根号2)/2]^2=t^2+(3倍根号2)t+5=[t+(3倍根号2)/2]^2+1/2
显然当t=-(3倍根号2)/2时,|m|取得最小值;
2、若a⊥b,则ab=0,即(1,2)(cosa,sina)=0,
cosa+2sina=0向量a-b(1-cosa,2-sina)和向量m(1+tcosa,2+tsina)的夹角为π/4,
故(a-b)*m=(1-cosa,2-sina)(1+tcosa,2+tsina)=5-t+(t-1)(cosa+2sina)=5-t,
|a-b|=根号[(1-cosa)^2+(2-sina)^2]=根号[6-2(cosa+2sina)]=根号6,
|m|=根号[(1+tcosa)^2+(2+tsina)^2]=根号[5+t^2+2t(cosa+2sina)]=根号(5+t^2),
于是cosπ/4=[(a-b)*m]/[|a-b|*|m|]=(5-t)/[(根号6)(根号(5+t^2))]
即(5-t)/[(根号6)(根号(5+t^2))]=(根号2)/2
整理得:t^2+5t-5=0解得t=(-5-3倍根号5)/2或t=(-5+3倍根号5)/2
综上当t=(-5-3倍根号5)/2或t=(-5+3倍根号5)/2时,向量a-b和向量m的夹角为π/4.
则m=(1+(t根号2)/2,2+(t根号2)/2),
于是|m|^2=[1+(t根号2)/2]^2+[2+(t根号2)/2]^2=t^2+(3倍根号2)t+5=[t+(3倍根号2)/2]^2+1/2
显然当t=-(3倍根号2)/2时,|m|取得最小值;
2、若a⊥b,则ab=0,即(1,2)(cosa,sina)=0,
cosa+2sina=0向量a-b(1-cosa,2-sina)和向量m(1+tcosa,2+tsina)的夹角为π/4,
故(a-b)*m=(1-cosa,2-sina)(1+tcosa,2+tsina)=5-t+(t-1)(cosa+2sina)=5-t,
|a-b|=根号[(1-cosa)^2+(2-sina)^2]=根号[6-2(cosa+2sina)]=根号6,
|m|=根号[(1+tcosa)^2+(2+tsina)^2]=根号[5+t^2+2t(cosa+2sina)]=根号(5+t^2),
于是cosπ/4=[(a-b)*m]/[|a-b|*|m|]=(5-t)/[(根号6)(根号(5+t^2))]
即(5-t)/[(根号6)(根号(5+t^2))]=(根号2)/2
整理得:t^2+5t-5=0解得t=(-5-3倍根号5)/2或t=(-5+3倍根号5)/2
综上当t=(-5-3倍根号5)/2或t=(-5+3倍根号5)/2时,向量a-b和向量m的夹角为π/4.
全部回答
- 1楼网友:野慌
- 2021-02-18 09:42
谢谢回答!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯