y=x^(3/2)在[0,1]上长度计算过程
答案:2 悬赏:10 手机版
解决时间 2021-02-11 10:25
- 提问者网友:鼻尖触碰
- 2021-02-11 00:57
y=x^(3/2)在[0,1]上长度计算过程
最佳答案
- 五星知识达人网友:一叶十三刺
- 2021-02-11 01:08
y`=[x^(3/2)]`=3√x /2
代入弧长公式,
得 s=∫<0,1>√(1+y`²)dx
=∫<0,1>√(1+9x/4)dx
=(4/9)(1+9x/4)^(3/2)|<0,1>
=(4/9)(13/4)^(3/2)-4/9
代入弧长公式,
得 s=∫<0,1>√(1+y`²)dx
=∫<0,1>√(1+9x/4)dx
=(4/9)(1+9x/4)^(3/2)|<0,1>
=(4/9)(13/4)^(3/2)-4/9
全部回答
- 1楼网友:掌灯师
- 2021-02-11 02:14
dy = (3/2)x^(1/2) dx
dl = √{(dy)²+(dx)²} = √{(9x/4)+1}dx
l = (0至1)∫√{(9/4)x+1}dx
= 2/{3*9/4) √ {(9x/4)+1}³ ||(0至1)
= (8/27) * √ {(9x/4)+1}³ ||(0至1)
= (8/27) * { √[(9/4)+1]³ - √[0+1]³ }
= (8/27) * { √[13/4]³ - 1 }
= (8/27) * { 13√13/8 - 1 }
= (13√13 - 8 ) / 27
dl = √{(dy)²+(dx)²} = √{(9x/4)+1}dx
l = (0至1)∫√{(9/4)x+1}dx
= 2/{3*9/4) √ {(9x/4)+1}³ ||(0至1)
= (8/27) * √ {(9x/4)+1}³ ||(0至1)
= (8/27) * { √[(9/4)+1]³ - √[0+1]³ }
= (8/27) * { √[13/4]³ - 1 }
= (8/27) * { 13√13/8 - 1 }
= (13√13 - 8 ) / 27
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯