如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AB、CC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:
①平面MB1P⊥ND1;②平面MB1P⊥平面ND1A1;③△MB1P在底面ABCD上的射影图形的面积为定值;④△MB1P在侧面D1C1CD上的射影图形是三角形.
其中正确命题的序号是________.
如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AB、CC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:①平面MB1P⊥ND
答案:2 悬赏:80 手机版
解决时间 2021-03-21 23:46
- 提问者网友:鐵馬踏冰河
- 2021-03-21 15:17
最佳答案
- 五星知识达人网友:零点过十分
- 2021-03-21 16:51
②③解析分析:由正方体的几何性质对四个命题时行判断,戡别正误,①平面MB1P⊥ND1;可用极限位置判断,②平面MB1P⊥平面ND1A1;可以证明MB1⊥平面ND1A1③△MB1P在底面ABCD上的射影图形的面积为定值,可以看到其投影三角形底边是MB,再由点P在底面上的投影到MB的距离不变即可证得④△MB1P在侧面D1C1CD上的射影图形是三角形,由图形判断即可.解答:①平面MB1P⊥ND1;可用极限位置判断,当P与N重合时,MB1P⊥ND1垂直不成立,故线面不可能垂直,此命题是错误命题;②平面MB1P⊥平面ND1A1;可以证明MB1⊥平面ND1A1,由图形知MB1与ND1和D1A1都垂直,故可证得MB1⊥平面ND1A1,进而可得平面MB1P⊥平面ND1A1,故是正确命题;③△MB1P在底面ABCD上的射影图形的面积为定值,可以看到其投影三角形底边是MB,再由点P在底面上的投影在DC上,故其到MB的距离不变即可证得;④△MB1P在侧面D1C1CD上的射影图形是三角形,由于P与C1重合时,P、B1两点的投影重合,不能构成三角形,故命题错误.综上②③正确故
全部回答
- 1楼网友:人间朝暮
- 2021-03-21 17:20
我也是这个答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |