设数列{an}的前n项和Sn=2an-2n,证明数列{an+1-2an}是等比数列(n、n+1为下标)
证明数列{an+2}是等比数列
求{an}的通项公式
(n为下标)
设数列{an}的前n项和Sn=2an-2n,证明数列{an+1-2an}是等比数列(n、n+1为下标)
答案:1 悬赏:70 手机版
解决时间 2021-08-13 12:31
- 提问者网友:沉默菋噵
- 2021-08-13 03:41
最佳答案
- 五星知识达人网友:西风乍起
- 2021-08-13 05:14
Sn=2an-2n
S(n+1)=2a(n+1)-2(n+1)
所以a(n+1)=S(n+1)-Sn=2a(n+1)-2an-2
故a(n+1)-2an=2
所以数列{a(n+1)-2an}是一个常数列,且不为0,那么也是等比数列,公比是1
因为a(n+1)-2an=2
a(n+1)=2an+2
所以a(n+1)+2=2(an+2)
故数列{an+2}是等比数列,公比是q=2
因为a1=S1=2a1-2
所以a1=2
故an+2=(a1+2)*2^(n-1)=(2+2)*2^(n-1)=2^(n+1)
所以an=2^(n+1)-2
如果不懂,请Hi我,祝学习愉快!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯