数学6年级上册解方程怎么做
答案:2 悬赏:30 手机版
解决时间 2021-02-07 20:11
- 提问者网友:嘚啵嘚啵
- 2021-02-07 07:13
数学6年级上册解方程怎么做
最佳答案
- 五星知识达人网友:独行浪子会拥风
- 2021-02-07 07:34
⒈含有未知数的等式叫方程,也可以说是含有未知数的等式是方程。
⒉使等式成立的未知数的值,称为方程的解,或方程的根。
⒊解方程就是求出方程中所有未知数的值。
⒋方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
⒌验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
⒍注意事项:写“解”字,等号对齐,检验。
⒎方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)
—解方程的方法——————————————————————————————————
⒈估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
⒉应用等式的性质进行解方程。
⒊合并同类项:使方程变形为单项式
⒋移项:将含未知数的项移到左边,常数项移到右边
⒌去括号:运用去括号法则,将方程中的括号去掉。
⒍去分母:等式两边同时乘以所有分母的最小公倍数。
⒎公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
—解方程的步骤——————————————————————————————————
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹ 开头要写“解”
例如:
3+x=18
解: x =18-3
x =15
——————————
4x+2(79-x)=192
解:4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
2x=34
x=17
——————————
πr=6.28(只取π小数点后两位)
解这道题首先要知道π等于几,π=3.141592……,只取3.14,
解:3.14r=6.28
r=6.28/3.14=2
不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边有x,为了简便算,可以调换位置。
⒉使等式成立的未知数的值,称为方程的解,或方程的根。
⒊解方程就是求出方程中所有未知数的值。
⒋方程一定是等式,等式不一定是方程。不含未知数的等式不是方程。
⒌验证:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。
⒍注意事项:写“解”字,等号对齐,检验。
⒎方程依靠等式各部分的关系,和加减乘除各部分的关系(加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,被减数-减数=差,被减数-差=减数,因数×因数=积,积÷一个因数=另一个因数,被除数÷除数=商,被除数÷商=除数,商×除数=被除数)
—解方程的方法——————————————————————————————————
⒈估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
⒉应用等式的性质进行解方程。
⒊合并同类项:使方程变形为单项式
⒋移项:将含未知数的项移到左边,常数项移到右边
⒌去括号:运用去括号法则,将方程中的括号去掉。
⒍去分母:等式两边同时乘以所有分母的最小公倍数。
⒎公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
—解方程的步骤——————————————————————————————————
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹ 开头要写“解”
例如:
3+x=18
解: x =18-3
x =15
——————————
4x+2(79-x)=192
解:4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
2x=34
x=17
——————————
πr=6.28(只取π小数点后两位)
解这道题首先要知道π等于几,π=3.141592……,只取3.14,
解:3.14r=6.28
r=6.28/3.14=2
不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边有x,为了简便算,可以调换位置。
全部回答
- 1楼网友:平生事
- 2021-02-07 08:43
很高兴为您解答:
一元一次方程:
1。7(2x-1)-3(4x-1)=4(3x+2)-1;
2.。(5y+1)+ (1-y)= (9y+1)+ (1-3y);
3。20%+(1-20%)(320-x)=320×40%
4。2(x-2)+2=x+1
5。2(x-2)-3(4x-1)=9(1-x)
6。x/3 -5 = (5-x)/2
7。2(x+1) /3=5(x+1) /6 -1
8。(1/5)x +1 =(2x+1)/4
9。(5-2)/2 - (4+x)/3 =1
10。x/3 -1 = (1-x)/2
11。(x-2)/2 - (3x-2)/4 =-1
12。11x+64-2x=100-9x
13。15-(8-5x)=7x+(4-3x)
14。3(x-7)-2[9-4(2-x)]=22
15。3/2[2/3(1/4x-1)-2]-x=2
16。2(x-2)-3(4x-1)=9(1-x)
17。11x+64-2x=100-9x
18。15-(8-5x)=7x+(4-3x)
19。3(x-7)-2[9-4(2-x)]=22
20。3/2[2/3(1/4x-1)-2]-x=2
21。2(x-2)+2=x+1
1。7(2x-1)-3(4x-1)=4(3x+2)-1
2。(5y+1)+ (1-y)= (9y+1)+ (1-3y)
3。[ (- 2)-4 ]=x+2
4。20%+(1-20%)(320-x)=320×40%
5。2(x-2)+2=x+1
6。2(x-2)-3(4x-1)=9(1-x)
7。11x+64-2x=100-9x
8。15-(8-5x)=7x+(4-3x)
9。3(x-7)-2[9-4(2-x)]=22
10。3/2[2/3(1/4x-1)-2]-x=2
11。5x+1-2x=3x-2
12。3y-4=2y+1
13。87x*13=5
14。7z/93=41
15。15x+863-65x=54
16。58y*55=27489
17。2(x+2)+4=9
18。2(x+4)=10
19。3(x-5)=18
20。4x+8=2(x-1)
21。3(x+3)=9+x
22。6(x/2+1)=12
23。9(x+6)=63
24。2+x=2(x-1/2)
25。8x+3(1-x)=-2
26。7+x-2(x-1)=1
27。x/3 -5 = (5-x)/2
28。2(x+1) /3=5(x+1) /6 -1
29。(1/5)x +1 =(2x+1)/4
30。(5-2)/2 - (4+x)/3 =1
15x-8(5x+1.5)=18*1.25+x
3x+189=521
4y+119=22
3x*189=5
8z/6=458
3x+77=59
4y-6985=81
87x*13=5
7z/93=41
15x+863-65x=54
58y*55=27489
1. 2(x-2)-3(4x-1)=9(1-x)
2. 11x+64-2x=100-9x
3. 15-(8-5x)=7x+(4-3x)
4. 3(x-7)-2[9-4(2-x)]=22
5. 3/2[2/3(1/4x-1)-2]-x=2
6. 2(x-2)+2=x+1
7. 0.4(x-0.2)+1.5=0.7x-0.38
8. 30x-10(10-x)=100
9. 4(x+2)=5(x-2)
10. 120-4(x+5)=25
11. 15x+863-65x=54
12. 12.3(x-2)+1=x-(2x-1)
13. 11x+64-2x=100-9x
14. 14.59+x-25.31=0
15. x-48.32+78.51=80
16. 820-16x=45.5×8
17. (x-6)×7=2x
18. 3x+x=18
19. 0.8+3.2=7.2
20. 12.5-3x=6.5
21. 1.2(x-0.64)=0.54
22. x+12.5=3.5x
23. 8x-22.8=1.2
24. 1\ 50x+10=60
25. 2\ 60x-30=20
26. 3\ 3^20x+50=110
27. 4\ 2x=5x-3
28. 5\ 90=10+x
29. 6\ 90+20x=30
30. 7\ 691+3x=700
1 2x-10.3x=15
2 0.52x-(1-0.52)x=80
3 x/2+3x/2=7
4 3x+7=32-2x
5 3x+5(138-x)=540
6 3x-7(x-1)=3-2(x+3)
7 18x+3x-3=18-2(2x-1)
8 3(20-y)=6y-4(y-11)
9 -(x/4-1)=5
10 3[4(5y-1)-8]=6
应用题
1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
解:设甲、乙一起做还需x小时才能完成工作.
根据题意,得 × +( + )x=1
解这个方程,得x=
=2小时12分
答:甲、乙一起做还需2小时12分才能完成工作.
2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
答:3年前兄的年龄是弟的年龄的2倍.
3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).
解:设圆柱形水桶的高为x毫米,依题意,得
•( )2x=300×300×80
x≈229.3
答:圆柱形水桶的高约为229.3毫米.
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为 分.
过完第二铁桥所需的时间为 分. 依题意,可列出方程 + =
解方程x+50=2x-50 得x=100 ∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
解:设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克. 根据题意,得2x+3x+5x=50
解这个方程,得x=5 于是2x=10,3x=15,5x=25
答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.
解:设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个. 根据题意,得16×5x+24×4(16-x)=1440
解得x=6 答:这一天有6名工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?
解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60
(2)设九月份共用电x千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90
所以0.36×90=32.40(元) 答:九月份共用电90千瓦时,应交电费32.40元.
8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为a种每台1500元,b种每台2100元,c种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台a种电视机可获利150元,销售一台b种电视机可获利200元,销售一台c种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
解:按购a,b两种,b,c两种,a,c两种电视机这三种方案分别计算,
设购a种电视机x台,则b种电视机y台.
(1)①当选购a,b两种电视机时,b种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25 50-x=25
②当选购a,c两种电视机时,c种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15
③当购b,c两种电视机时,c种电视机为(50-y)台.可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购a,b两种电视机25台;二是购a种电视机35台,c种电视机15台.
(2)若选择(1)中的方案①,可获利 150×25+250×15=8750(元) 若选择(1)中的方案②,可获利
150×35+250×15=9000(元) 9000>8750 故为了获利最多,选择第二种方案.
9. 在一次区里举办的知识竞赛中,某校代表队的平均分是88分,其中女生的平均成绩比男生高10%,而男生人数比女生人数多10%,问男、女生的平均成绩各是多少分?
设女生人数为x人,则男生为1.1x人
设男生平均分a分,则女生平均分为1.1a分
最后祝您学业成功!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯