急 抛物线y=x2-2x-3与X轴交A B两点 (A点在B点左侧),直线L与抛物线交于A C两点 其
答案:2 悬赏:50 手机版
解决时间 2021-03-08 19:17
- 提问者网友:我一贱你就笑
- 2021-03-07 22:50
急 抛物线y=x2-2x-3与X轴交A B两点 (A点在B点左侧),直线L与抛物线交于A C两点 其
最佳答案
- 五星知识达人网友:独钓一江月
- 2021-03-07 23:06
1 y=(x-1)^2-4 则 A (-1,0) B(3,0) C(2,-3) AC解析式为y=-x-1PE=P点纵坐标-E点纵坐标=-x-1-x^2+2x+3=-(x-1/2)^2+9/4 x属于[-1,2]因为可取1/2 所以最大值9/42 分析A F2点关系 要么四边形邻点 要么对点 (1)若为邻点 必有AF//GC 因为AF为X轴 所以GC//x轴 再加上G为抛物线上的点 所以容易得G为(0,-3)要想四边形是平行四边形 FG和AC必互相平分 即有公共中心 容易得F=(1,0)(2)若为对点 且想四边形是平行四边形 那么G C2点必关于AF对称 所以G点纵坐标必为3 则G为(1+根号7,3)或者(1-根号7,3) 来求2点 对应不同的F 只需满足AF和CG有公共的中心 具体解多少不求了 方法跟(1)雷同
全部回答
- 1楼网友:上分大魔王
- 2021-03-08 00:45
感谢回答
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯