永发信息网

△ABC中,AB=AC=3cm,BC=2cm,以AC为直径作半圆交AB于点D,交BC于点E,图中阴影

答案:2  悬赏:50  手机版
解决时间 2021-02-18 12:10
△ABC中,AB=AC=3cm,BC=2cm,以AC为直径作半圆交AB于点D,交BC于点E,图中阴影
最佳答案
取AC中点为O,连OD,OE,设∠BAC=α,∠DOA=β,∠DOE=γ,∠EOC=δ在三角形BAC中,cosα=(3^2+3^2-2^2)/(2×3×3)=7/9,sinα=(4√2)/9过O做OH垂直AD于H,△AOH中AH=AOcosα=(3/2)×(7/9)=7/6则AD=7/3,那么BD=3-7/3=2/3,sin(β/2)=AH/AO=cosα=7/9,cos(β/2)=sinα=(4√2)/9,则sinβ=2sin(β/2)cos(β/2)=2×(7/9)×((4√2)/9)=(56√2)/81,在△ADO中由余弦定理,cosβ=[(3/2)^2+(3/2)^2-(7/3)^2]/[2×(3/2)×(3/2)]=-17/81因为OE半径,所以OE=OC=(1/2)AC=(1/2)AB,所以△OEC∽△ABC,所以∠EOC=α,E为底边BC中点cosπ=cos[γ+(β+α)]=cos(α+β)cosγ-sin(α+β)sinγ=(cosαcosβ-sinαsinβ)cosγ-(sinαcosβ+cosαsinβ)sinγ=-1,将sinα,cosα,sinβ,cosβ值代入计算,则最终有[(4√2)/9]sinγ+(7/9)cosγ=1又因为sinα=(4√2)/9,cosα=7/9,所以又有sinαsinγ+cosαcosγ=1,那么cos(α-γ)=1所以α-γ=0,所以α=γ连DE,由α=γ可知EC弓形的面积等于弓形DE的面积所以阴影部分的面积就是△BDE的面积,BE=1,BD=2/3,△DOE与△EOC全等,所以DE=1又有DE/OE=1/(3/2)=2/3=DB/EC,则△BDE∽△CEO,所以∠DEB=α,△BDE面积=(1/2)×BE×DE×sinα=(1/2)×1×1×[(4√2)/9]=(2√2)/9
全部回答
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
刚弃坑COK 有没有别的类似的游戏玩 COK太坑了
新生儿保险哪种最好
梁姓男孩洋气点的名字
众信达网络科技有限公司地址有知道的么?有点
任意6个人里必有3个人互相认识或不认识.怎么
显卡能很好的安装驱动 是不是就说明显卡没坏
小微金融交易我想知道这个在什么地方
赛玛按摩椅怎么样,质量到底,买过的来说说
国家对大企业,和小企业的态度是什么。
鑫玲超市在什么地方啊,我要过去处理事情
陕西中医学院研究生与长春中医药研究生哪个更
造成下图漫画中所反映的历史运动的最主要因素
哪位大侠 能教小弟学习一下CFC程序块
安远县至车头乡怎么坐车
牵手婚庆怎么去啊,有知道地址的么
推荐资讯
景德良居地址在哪,我要去那里办事
“节用而爱人,使民以时。”孔子这句名言的核
无为县比亚迪4s店到南门乞车站
堂口刺青处怎么去啊,有知道地址的么
【巭孬嫑夯昆】巭孬嫑夯昆
什么是无功能障碍者
瑞丽花艺怎么去啊,有知道地址的么
陕西金盾安保服务有限公司这个地址在什么地方
甲公司2009年7月自行研发完成一项专利权,并
关于情态动词有一题是这样的:I saw somethin
Nikeairmax的一双鞋底黑色和粉色渐变的是不是
我国境内已知的最早人类是BA. 北京人B. 元谋
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?