△ABC中,AB=AC=3cm,BC=2cm,以AC为直径作半圆交AB于点D,交BC于点E,图中阴影
答案:2 悬赏:50 手机版
解决时间 2021-02-18 12:10
- 提问者网友:箛茗
- 2021-02-18 03:44
△ABC中,AB=AC=3cm,BC=2cm,以AC为直径作半圆交AB于点D,交BC于点E,图中阴影
最佳答案
- 五星知识达人网友:迷人又混蛋
- 2021-02-18 05:06
取AC中点为O,连OD,OE,设∠BAC=α,∠DOA=β,∠DOE=γ,∠EOC=δ在三角形BAC中,cosα=(3^2+3^2-2^2)/(2×3×3)=7/9,sinα=(4√2)/9过O做OH垂直AD于H,△AOH中AH=AOcosα=(3/2)×(7/9)=7/6则AD=7/3,那么BD=3-7/3=2/3,sin(β/2)=AH/AO=cosα=7/9,cos(β/2)=sinα=(4√2)/9,则sinβ=2sin(β/2)cos(β/2)=2×(7/9)×((4√2)/9)=(56√2)/81,在△ADO中由余弦定理,cosβ=[(3/2)^2+(3/2)^2-(7/3)^2]/[2×(3/2)×(3/2)]=-17/81因为OE半径,所以OE=OC=(1/2)AC=(1/2)AB,所以△OEC∽△ABC,所以∠EOC=α,E为底边BC中点cosπ=cos[γ+(β+α)]=cos(α+β)cosγ-sin(α+β)sinγ=(cosαcosβ-sinαsinβ)cosγ-(sinαcosβ+cosαsinβ)sinγ=-1,将sinα,cosα,sinβ,cosβ值代入计算,则最终有[(4√2)/9]sinγ+(7/9)cosγ=1又因为sinα=(4√2)/9,cosα=7/9,所以又有sinαsinγ+cosαcosγ=1,那么cos(α-γ)=1所以α-γ=0,所以α=γ连DE,由α=γ可知EC弓形的面积等于弓形DE的面积所以阴影部分的面积就是△BDE的面积,BE=1,BD=2/3,△DOE与△EOC全等,所以DE=1又有DE/OE=1/(3/2)=2/3=DB/EC,则△BDE∽△CEO,所以∠DEB=α,△BDE面积=(1/2)×BE×DE×sinα=(1/2)×1×1×[(4√2)/9]=(2√2)/9
全部回答
- 1楼网友:底特律间谍
- 2021-02-18 05:25
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯