【ikx】Gaussian积分e(ikx)*e(-k‘x^2/2)积分区间无穷,积分...
答案:2 悬赏:50 手机版
解决时间 2021-02-22 07:59
- 提问者网友:末路
- 2021-02-21 21:37
【ikx】Gaussian积分e(ikx)*e(-k‘x^2/2)积分区间无穷,积分...
最佳答案
- 五星知识达人网友:鸠书
- 2021-02-21 23:02
【答案】 f(x)=e(-k′x^2/2)
g(k)=∫e(ikx)e(-k′x^2/2)dx
df(x)/dx+k′xf(x)=0
→∫e(ikx)(df(x)/dx+k′xf(x)=0)dx
∫e(ikx)df(x)/dxdx=-ikg(k)
∫e(ikx)k′xf(x)=-ik′dg(k)/dk
→kg(k)+k′dg(k)/dk=0
→g(k)=Ce(-k^2/(2k′))
where C=g(0)=∫e(-k′x^2/2)dx=√(2π/k′)
→g(k)=√(2π/k′)e(-k^2/(2k′))
i.e.∫e(ikx)e(-kx^2/2)dx=g(k)=√(2π/k′)e(-k^2/(2k′))
FOURIER TRANSFORM OF GAUSSIAN FUNCTION
g(k)=∫e(ikx)e(-k′x^2/2)dx
df(x)/dx+k′xf(x)=0
→∫e(ikx)(df(x)/dx+k′xf(x)=0)dx
∫e(ikx)df(x)/dxdx=-ikg(k)
∫e(ikx)k′xf(x)=-ik′dg(k)/dk
→kg(k)+k′dg(k)/dk=0
→g(k)=Ce(-k^2/(2k′))
where C=g(0)=∫e(-k′x^2/2)dx=√(2π/k′)
→g(k)=√(2π/k′)e(-k^2/(2k′))
i.e.∫e(ikx)e(-kx^2/2)dx=g(k)=√(2π/k′)e(-k^2/(2k′))
FOURIER TRANSFORM OF GAUSSIAN FUNCTION
全部回答
- 1楼网友:鸽屿
- 2021-02-22 00:21
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯