如图已知抛物线y=3/4x2+bx+c与坐标轴交于A,B,C三点A(-1,0),过点c的直线
答案:6 悬赏:80 手机版
解决时间 2021-11-14 03:02
- 提问者网友:呐年旧曙光
- 2021-11-13 19:43
如图已知抛物线y=3/4x2+bx+c与坐标轴交于A,B,C三点A(-1,0),过点c的直线
最佳答案
- 五星知识达人网友:孤独入客枕
- 2021-11-13 21:11
解:(1)(0,-3),b=-,c=-3.
(2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC,
∵OC∶OB∶BC=3∶4∶5,
∴HP∶HB∶BP=3∶4∶5,
∵PB=5t,∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
①当H在Q、B之间时,
QH=OH-OQ
=(4-4t)-4t=4-8t.
②当H在O、Q之间时,
QH=OQ-OH
=4t-(4-4t)=8t-4.
综合①,②得QH=|4-8t|;
(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似.
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得=,
∴t=.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得=,
即t2+2t-1=0.
∴t1=-1,t2=--1(舍去).
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得=,
∴t=.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得=,
即t2-2t+1=0.
∴t1=t2=1(舍去).
综上所述,存在的值,t1=-1,t2=,t3=.
(2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC,
∵OC∶OB∶BC=3∶4∶5,
∴HP∶HB∶BP=3∶4∶5,
∵PB=5t,∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
①当H在Q、B之间时,
QH=OH-OQ
=(4-4t)-4t=4-8t.
②当H在O、Q之间时,
QH=OQ-OH
=4t-(4-4t)=8t-4.
综合①,②得QH=|4-8t|;
(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似.
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得=,
∴t=.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得=,
即t2+2t-1=0.
∴t1=-1,t2=--1(舍去).
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得=,
∴t=.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得=,
即t2-2t+1=0.
∴t1=t2=1(舍去).
综上所述,存在的值,t1=-1,t2=,t3=.
全部回答
- 1楼网友:枭雄戏美人
- 2021-11-14 02:06
(1)根据题意过点C的直线y=3/4t x-3与x轴交于点Q,得出C点坐标为:(0,-3),
将A点的坐标为(-1,0),C(0,-3)代入二次函数解析式求出:
b=-9/4,c=-3 (2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC,
∵OC∶OB∶BC=3∶4∶5,
∴HP∶HB∶BP=3∶4∶5,
∵PB=5t,∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
①当H在Q、B之间时,
QH=OH-OQ
=(4-4t)-4t=4-8t.
②当H在O、Q之间时,
QH=OQ-OH
=4t-(4-4t)=8t-4.
综合①,②得QH=|4-8t|; 回答者:teacher046 (1)如图
(2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC,
∵OC∶OB∶BC=3∶4∶5,
∴HP∶HB∶BP=3∶4∶5,
∵PB=5t,∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似.
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得
(4-8t)/3 =3t/4t ,
∴t=7/32.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得
3t:3 =(4-8t):4t ,
即t^2+2t-1=0.
∴t1=根号2-1,t2=-根号2-1(舍去).
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得
(8t-4)/3=4t/3t
∴t1==25/32.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得
(8t-4)/4t=3t/3
即t2-2t+1=0.
∴t1=t2=1(舍去).
综上所述,存在的值,t1=根号2-1,t2=7/32,t3=25/32.
将A点的坐标为(-1,0),C(0,-3)代入二次函数解析式求出:
b=-9/4,c=-3 (2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC,
∵OC∶OB∶BC=3∶4∶5,
∴HP∶HB∶BP=3∶4∶5,
∵PB=5t,∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
①当H在Q、B之间时,
QH=OH-OQ
=(4-4t)-4t=4-8t.
②当H在O、Q之间时,
QH=OQ-OH
=4t-(4-4t)=8t-4.
综合①,②得QH=|4-8t|; 回答者:teacher046 (1)如图
(2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC,
∵OC∶OB∶BC=3∶4∶5,
∴HP∶HB∶BP=3∶4∶5,
∵PB=5t,∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似.
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得
(4-8t)/3 =3t/4t ,
∴t=7/32.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得
3t:3 =(4-8t):4t ,
即t^2+2t-1=0.
∴t1=根号2-1,t2=-根号2-1(舍去).
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得
(8t-4)/3=4t/3t
∴t1==25/32.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得
(8t-4)/4t=3t/3
即t2-2t+1=0.
∴t1=t2=1(舍去).
综上所述,存在的值,t1=根号2-1,t2=7/32,t3=25/32.
- 2楼网友:渊鱼
- 2021-11-14 01:01
26.解:(1)(0,-3),b=-94,c=-3. ······································································· 3分 (2)由(1),得y=34x2-94x-3,它与x轴交于A,B两点,得B(4,0). ∴OB=4,又∵OC=3,∴BC=5. 由题意,得△BHP∽△BOC, ∵OC∶OB∶BC=3∶4∶5, ∴HP∶HB∶BP=3∶4∶5, ∵PB=5t,∴HB=4t,HP=3t. ∴OH=OB-HB=4-4t. 由y=34tx-3与x轴交于点Q,得Q(4t,0). ∴OQ=4t. ·································································································· 4分 ①当H在Q、B之间时, QH=OH-OQ =(4-4t)-4t=4-8t. ······································································ 5分 ②当H在O、Q之间时, QH=OQ-OH =4t-(4-4t)=8t-4. ······································································ 6分 综合①,②得QH=|4-8t|; ····································································· 6分 (3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似. ···················· 7分 ①当H在Q、B之间时,QH=4-8t, 若△QHP∽△COQ,则QH∶CO=HP∶OQ,得483t−=34tt, ∴t=732. ···································································································· 7分 若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得33t=484tt−, 即t2+2t-1=0. ∴t1=2-1,t2=-2-1(舍去). ····················································· 8分 ②当H在O、Q之间时,QH=8t-4. 若△QHP∽△COQ,则QH∶CO=HP∶OQ,得843t−=34tt, ∴t=2532. ···································································································· 9分 若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得33t=844tt−, 即t2-2t+1=0. ∴t1=t2=1(舍去). ················································································· 10分 综上所述,存在t的值,t1=2-1,t2=732,t3=2532. ··························· 10分
- 3楼网友:胯下狙击手
- 2021-11-13 23:58
解:根据题意过点C的直线y=
34tx-3与x轴交于点Q,得出C点坐标为:(0,-3),
将A点的坐标为(-1,0),C(0,-3)代入二次函数解析式求出:
b=-94,c=-3;
得y=34x2-94x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,
又∵OC=3,
∴BC=5.
由题意,得△BHP∽△BOC,
∵OC:OB:BC=3:4:5,
∴HP:HB:BP=3:4:5,
∵PB=5t,
∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=34tx-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
①当H在Q、B之间时,QH=OH-OQ=(4-4t)-4t=4-8t.
②当H在O、Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4.
综合①,②得QH=|4-8t|;
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH:CO=HP:OQ,得
4-8t/3=3t/4t,
解得:t=7/32;
若△PHQ∽△COQ,则PH:CO=HQ:OQ,得
3t/3=4-8t/4t,
即t2+2t-1=0.
解得:t1=2-1,t2=-2-1(舍去),
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH:CO=HP:OQ,得
8t-4/3=3t/4t,
解得:t=2532;
若△PHQ∽△COQ,则PH:CO=HQ:OQ,得
3t/3=8t-4/4t,
即t2-2t+1=0.
∴t1=t2=1(舍去).
综上所述,存在t的值,t1=2-1,t2=7/32,t3=25/32,
故答案为:根号2-1,7/32,25/32.
34tx-3与x轴交于点Q,得出C点坐标为:(0,-3),
将A点的坐标为(-1,0),C(0,-3)代入二次函数解析式求出:
b=-94,c=-3;
得y=34x2-94x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,
又∵OC=3,
∴BC=5.
由题意,得△BHP∽△BOC,
∵OC:OB:BC=3:4:5,
∴HP:HB:BP=3:4:5,
∵PB=5t,
∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=34tx-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
①当H在Q、B之间时,QH=OH-OQ=(4-4t)-4t=4-8t.
②当H在O、Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4.
综合①,②得QH=|4-8t|;
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH:CO=HP:OQ,得
4-8t/3=3t/4t,
解得:t=7/32;
若△PHQ∽△COQ,则PH:CO=HQ:OQ,得
3t/3=4-8t/4t,
即t2+2t-1=0.
解得:t1=2-1,t2=-2-1(舍去),
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH:CO=HP:OQ,得
8t-4/3=3t/4t,
解得:t=2532;
若△PHQ∽△COQ,则PH:CO=HQ:OQ,得
3t/3=8t-4/4t,
即t2-2t+1=0.
∴t1=t2=1(舍去).
综上所述,存在t的值,t1=2-1,t2=7/32,t3=25/32,
故答案为:根号2-1,7/32,25/32.
- 4楼网友:一叶十三刺
- 2021-11-13 22:37
∵y=(-3/4t)X+3 经过C(0,c) ∴c=(-3/4t)*0+3 即c=3
Q即y=(-3/4t)X+3与x轴的交点. ∴Q(4t,0)
∵A(-1,0) 即0=-3/4*(-1)^2+b*(-1)+c 可得b=c-3/4=3-3/4=9/4
∴抛物线解析式:y=-3/4x^2+9/4x+3 B(4,0) C(0,3)
根据△COB∽△PHB可知: P(4-4t,3t)
∴Q(4t,0) B(4,0) P(4-4t,3t)
△PQB为等腰三角形,那么①BP=BQ ②PQ=BQ ③PQ=PB
①:BQ=OB-AQ=4-4t, BP=5t ∴4-4t=5t 得 t=4/9
②:先求出PQ的长,是根号下[(4-8t)^2+(3t)^2]根据PQ=BQ,得一等式,两边同时平方,得:(4-8t)^2+(3t)^2=(4-4t)^2
化简得:57*t^2-32t=0 ∴t1=0(舍), t2=32/57③:此情况下,根据等腰三角形三线合一可知,QH=HB
∴QH=HB=4t=OQ 又∵OQ+QH+HB=OB=4 ∴3*4t=4 t=1/3
t1=4/9, t2=32/57, t3=1/3
Q即y=(-3/4t)X+3与x轴的交点. ∴Q(4t,0)
∵A(-1,0) 即0=-3/4*(-1)^2+b*(-1)+c 可得b=c-3/4=3-3/4=9/4
∴抛物线解析式:y=-3/4x^2+9/4x+3 B(4,0) C(0,3)
根据△COB∽△PHB可知: P(4-4t,3t)
∴Q(4t,0) B(4,0) P(4-4t,3t)
△PQB为等腰三角形,那么①BP=BQ ②PQ=BQ ③PQ=PB
①:BQ=OB-AQ=4-4t, BP=5t ∴4-4t=5t 得 t=4/9
②:先求出PQ的长,是根号下[(4-8t)^2+(3t)^2]根据PQ=BQ,得一等式,两边同时平方,得:(4-8t)^2+(3t)^2=(4-4t)^2
化简得:57*t^2-32t=0 ∴t1=0(舍), t2=32/57③:此情况下,根据等腰三角形三线合一可知,QH=HB
∴QH=HB=4t=OQ 又∵OQ+QH+HB=OB=4 ∴3*4t=4 t=1/3
t1=4/9, t2=32/57, t3=1/3
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯