设P是双曲线bx^2-a^2y^2=a^2b^2(a>0,b>0)上任意一点,过点P作双曲线两渐近线的平行线,分别与两渐近线相交于点Q和R,求证:︱PQ︱.︱PR︱=(a^2+b^2)/4
设P是双曲线bx^2-a^2y^2=a^2b^2(a>0,b>0)上任意一点,过点P作双曲线两渐近线的平行线,分别与两渐
答案:1 悬赏:40 手机版
解决时间 2021-05-05 13:46
- 提问者网友:战皆罪
- 2021-05-04 20:00
最佳答案
- 五星知识达人网友:鸽屿
- 2021-05-04 20:28
设p点为(x0,y0)用点斜式写出过p点的两条直线方程 再与双曲线列方程组 求交点坐标 最后得答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯