某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).
(1)如果他要打破记录,第7次射击不能少于多少环?
(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?
(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?
某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于
答案:2 悬赏:10 手机版
解决时间 2021-04-08 13:14
- 提问者网友:夢醒日落
- 2021-04-08 03:23
最佳答案
- 五星知识达人网友:春色三分
- 2021-04-08 04:51
解:设第7,8,9,10次射击分别为x7,x8,x9,x10环.
(1)根据题意,得52+x7+30>89,
∴x7>7.
∴如果他要打破纪录,第7次射击不能少于8环.
(2)根据题意得52+8+x8+x9+x10>89,
x8+x9+x10>29,
又x8,x9,x10只取1~10中的正整数,
∴x8=x9=x10=10.
即:要有3次命中10环才能打破纪录.
(3)根据题意得52+10+x8+x9+x10>89
x8+x9+x10>27,
又x8,x9,x10只取1~10中的正整数,
∴x8,x9,x10中至少有一个为10,
即:最后三次射击中必须至少有一次命中10环才可能打破纪录.解析分析:(1)可根据前6次的52环+第7,8,9,10次射击的环数和>89,因为每次环数最多是10环,因此第8,9,10次每次最多10环,根据不等式和这些条件可得出第7次射击的环数的范围.
(2)不等式关系是:52+8+第8,9,10次射击的环数和>89,根据每次的环数都在1-10之间,看看8,9,10次有几个10环.
(3)方法同(2)只不过第7次改成了10环.点评:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.准确的找到不等关系列不等式是解题的关键.本题主要是分别利用该项目的记录是89环作为不等关系列不等式求解.
(1)根据题意,得52+x7+30>89,
∴x7>7.
∴如果他要打破纪录,第7次射击不能少于8环.
(2)根据题意得52+8+x8+x9+x10>89,
x8+x9+x10>29,
又x8,x9,x10只取1~10中的正整数,
∴x8=x9=x10=10.
即:要有3次命中10环才能打破纪录.
(3)根据题意得52+10+x8+x9+x10>89
x8+x9+x10>27,
又x8,x9,x10只取1~10中的正整数,
∴x8,x9,x10中至少有一个为10,
即:最后三次射击中必须至少有一次命中10环才可能打破纪录.解析分析:(1)可根据前6次的52环+第7,8,9,10次射击的环数和>89,因为每次环数最多是10环,因此第8,9,10次每次最多10环,根据不等式和这些条件可得出第7次射击的环数的范围.
(2)不等式关系是:52+8+第8,9,10次射击的环数和>89,根据每次的环数都在1-10之间,看看8,9,10次有几个10环.
(3)方法同(2)只不过第7次改成了10环.点评:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.准确的找到不等关系列不等式是解题的关键.本题主要是分别利用该项目的记录是89环作为不等关系列不等式求解.
全部回答
- 1楼网友:几近狂妄
- 2021-04-08 05:25
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |