我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐
答案:2 悬赏:60 手机版
解决时间 2021-12-29 21:49
- 提问者网友:蔚蓝的太阳
- 2021-12-29 03:14
我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,-3)AB为半圆直径,半圆圆心M(1,0),半径为2,则经过点D的“蛋圆”的切线的解析式为________.
最佳答案
- 五星知识达人网友:风格不统一
- 2022-01-22 05:54
y=-2x-3解析分析:根据圆心坐标及圆的半径,结合图形,可得点A坐标为(-1,0),点B坐标为(3,0),利用待定系数法确定抛物线解析式,因为经过点D的“蛋圆”切线过D点,所以本题可设它的解析式为y=kx-3,因为相切,所以它们的交点只有一个,进而可根据一元二次方程的有关知识解决问题.解答:∵AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2,
∴A(-1,0),B(3,0),
∵抛物线过点A、B,
∴设抛物线的解析式为y=a(x+1)(x-3),
又∵抛物线过点D(0,-3),
∴-3=a?1?(-3),即a=1,
∴y=x2-2x-3,
∵经过点D的“蛋圆”切线过D(0,-3)点,
∴设它的解析式为y=kx-3,
又∵抛物线y=x2-2x-3与直线y=kx-3相切,
∴x2-2x-3=kx-3,即x2-(2+k)x=0只有一个解,
∴△=(2+k)2-4×0=0,
解得:k=-2,
即经过点D的“蛋圆”切线的解析式为y=-2x-3.
故
∴A(-1,0),B(3,0),
∵抛物线过点A、B,
∴设抛物线的解析式为y=a(x+1)(x-3),
又∵抛物线过点D(0,-3),
∴-3=a?1?(-3),即a=1,
∴y=x2-2x-3,
∵经过点D的“蛋圆”切线过D(0,-3)点,
∴设它的解析式为y=kx-3,
又∵抛物线y=x2-2x-3与直线y=kx-3相切,
∴x2-2x-3=kx-3,即x2-(2+k)x=0只有一个解,
∴△=(2+k)2-4×0=0,
解得:k=-2,
即经过点D的“蛋圆”切线的解析式为y=-2x-3.
故
全部回答
- 1楼网友:人间朝暮
- 2022-01-22 07:09
好好学习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯