如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C. 在线等,,快,,
答案:6 悬赏:50 手机版
解决时间 2021-11-30 21:51
- 提问者网友:泪痣哥哥
- 2021-11-30 14:33
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C. 在线等,,快,,
最佳答案
- 五星知识达人网友:野味小生
- 2021-11-30 16:04
由题意,在OC上截取OM=OP,连结MQ,
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以,∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,所以,AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3.
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以,∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,所以,AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3.
全部回答
- 1楼网友:十鸦
- 2021-11-30 20:18
解:(1)①由题意,y=-2x+12,y=x
解得x=4,y=4所以C(4,4)
②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
(2)由题意,在OC上截取OM=OP,连结MQ,
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以,∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,所以,AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3
解得x=4,y=4所以C(4,4)
②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
(2)由题意,在OC上截取OM=OP,连结MQ,
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以,∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,所以,AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3
- 2楼网友:枭雄戏美人
- 2021-11-30 20:03
解:(1)①由题意,y=-2x+12,y=x
解得x=4,y=4所以C(4,4)
②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
(2)由题意,在OC上截取OM=OP,连结MQ,
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以,∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,所以,AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3.
给我加分啊!!!!!
解得x=4,y=4所以C(4,4)
②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
(2)由题意,在OC上截取OM=OP,连结MQ,
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以,∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,所以,AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3.
给我加分啊!!!!!
- 3楼网友:神鬼未生
- 2021-11-30 19:14
解:(1)①由题意,y=-2x+12y=x.(2分)
解得x=4y=4.所以C(4,4)(3分)
②把y=0代入y=-2x+12得,x=6,所以A点坐标为(6,0),(4分)
所以S△OAC=
12×6×4=12.(6分)
(2)存在;
由题意,在OC上截取OM=OP,连接MQ,
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),(7分)
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为6,所以AM=2×6÷4=3,
∴AQ+PQ存在最小值,最小值为3.(9分)
解得x=4y=4.所以C(4,4)(3分)
②把y=0代入y=-2x+12得,x=6,所以A点坐标为(6,0),(4分)
所以S△OAC=
12×6×4=12.(6分)
(2)存在;
由题意,在OC上截取OM=OP,连接MQ,
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),(7分)
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为6,所以AM=2×6÷4=3,
∴AQ+PQ存在最小值,最小值为3.(9分)
- 4楼网友:怙棘
- 2021-11-30 17:57
在OC上截取OM=OP,连结MQ,
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以,∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,所以,AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以,∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,所以,AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3
- 5楼网友:十鸦
- 2021-11-30 16:51
解:(1)①由题意,y=-2x+12y=x.(2分)
解得x=4y=4.所以C(4,4)(3分)
②把y=0代入y=-2x+12得,x=6,所以A点坐标为(6,0),(4分)
所以S△OAC=
12×6×4=12.(6分)
(2)存在;
由题意,在OC上截取OM=OP,连接MQ,
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),(7分)
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为6,所以AM=2×6÷4=3,
∴AQ+PQ存在最小值,最小值为3.(9分)
解得x=4y=4.所以C(4,4)(3分)
②把y=0代入y=-2x+12得,x=6,所以A点坐标为(6,0),(4分)
所以S△OAC=
12×6×4=12.(6分)
(2)存在;
由题意,在OC上截取OM=OP,连接MQ,
∵OQ平分∠AOC,
∴∠AOQ=∠COQ,
又OQ=OQ,
∴△POQ≌△MOQ(SAS),(7分)
∴PQ=MQ,
∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以∠AEO=∠CEO,
∴△AEO≌△CEO(ASA),
∴OC=OA=4,
∵△OAC的面积为6,所以AM=2×6÷4=3,
∴AQ+PQ存在最小值,最小值为3.(9分)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯