简单开根号的详细步骤
答案:3 悬赏:60 手机版
解决时间 2021-04-27 06:15
- 提问者网友:嗝是迷路的屁
- 2021-04-26 22:33
简单开根号的详细步骤
最佳答案
- 五星知识达人网友:想偏头吻你
- 2021-04-27 00:07
简单方法是 背下一百以内的质数的开放
然后将要开的数 分解因式 例如 根号13=根号十三
根号123=根号4*31=2倍根号31
根号1500= 根号100*15=10倍根号15.=10倍根号5乘根号3.
繁琐方法:
转帖
先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析. 根据两数和的平方公式,可以得到 1156=(30+a)2=302+2×30a+a2, 所以 1156-302=2×30a+a2, 即 256=(3×20+a)a, 这就是说, a是这样一个正整数,它与 3×20的和,再乘以它本身,等于256. 为便于求得a,可用下面的竖式来进行计算: 根号上面的数3是平方根的十位数.将 256试除以20×3,得4.由于4与20×3的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到 1156=342,或 上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下: 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4); 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数. 按照上面步骤求 ,可得到下面左边的竖式: 于是得到 如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.
然后将要开的数 分解因式 例如 根号13=根号十三
根号123=根号4*31=2倍根号31
根号1500= 根号100*15=10倍根号15.=10倍根号5乘根号3.
繁琐方法:
转帖
先一起来研究一下,怎样求 ,这里1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3.于是问题的关键在于;怎样求出它的个位数a?为此,我们从a所满足的关系式来进行分析. 根据两数和的平方公式,可以得到 1156=(30+a)2=302+2×30a+a2, 所以 1156-302=2×30a+a2, 即 256=(3×20+a)a, 这就是说, a是这样一个正整数,它与 3×20的和,再乘以它本身,等于256. 为便于求得a,可用下面的竖式来进行计算: 根号上面的数3是平方根的十位数.将 256试除以20×3,得4.由于4与20×3的和64,与4的积等于256,4就是所求的个位数a.竖式中的余数是0,表示开方正好开尽.于是得到 1156=342,或 上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下: 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是 4,即试商是4); 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数. 按照上面步骤求 ,可得到下面左边的竖式: 于是得到 如遇开不尽的情况,可根据所要求的精确度求出它的近似值.例如求 的近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到 笔算开平方运算较繁,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值. 我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.
全部回答
- 1楼网友:怙棘
- 2021-04-27 02:11
不好意思,恕我的文化水平不高,我发帮您解答
- 2楼网友:枭雄戏美人
- 2021-04-27 01:04
把跟号里面的数尽量分解成多个完全平方数的乘积
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯