如图,在数轴上,点A、B、C所对应的数分别为a、b、c,且OA=OB,则下列结论:
①a、b、c一定都是有理数,②a+b=0,③a<b<c,④BC=|b-c|,其中正确的有A.1个B.2个C.3个D.4个
如图,在数轴上,点A、B、C所对应的数分别为a、b、c,且OA=OB,则下列结论:①a、b、c一定都是有理数,②a+b=0,③a<b<c,④BC=|b-c|,其中正确
答案:2 悬赏:0 手机版
解决时间 2021-04-06 23:08
- 提问者网友:那叫心脏的地方装的都是你
- 2021-04-06 01:30
最佳答案
- 五星知识达人网友:未来江山和你
- 2021-04-06 02:29
C解析分析:根据数轴上的数与实数具有一一对应关系,以及数轴上的数左边的总数大于右边的数,即可作出判断.解答:①数轴上的数表示实数,既可以是有理数,也可以是无理数,故结论错误;②根据数轴可以得到:a,b异号,而OA=OB,则a,b胡为相反数,则a+b=0,则结论正确;③根据数轴上的数:右边的总是大于左边的数,即可得到:a<b<c,故结论正确;④正确.则正确的是:②③④,故选C.点评:本题考查了数轴与实数的关系,以及相反数的定义,引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.
全部回答
- 1楼网友:轻熟杀无赦
- 2021-04-06 02:45
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯