定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(x/5)=1/2f(x),且当0≤x1
答案:1 悬赏:0 手机版
解决时间 2021-08-21 23:36
- 提问者网友:风月客
- 2021-08-21 04:25
定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(x/5)=1/2f(x),且当0≤x1
最佳答案
- 五星知识达人网友:动情书生
- 2021-08-21 05:32
f(0)=0, f(x)+f(1-x)=1 ==> f(1/2)=1/2, f(1)=1
f(1)=1, f(x/5)=1/2f(x), f(x)+f(1-x)=1 ==> f(1/5)=1/2, f(4/5)=1/2
f(1/5)=1/2, f(1/2)=1/2, f(4/5)=1/2, f(x1)≤f(x2){0≤x1 [1/5,4/5]区间f(x)=1/2
f(x/5)=1/2f(x) ==> [1/5^n, 4/5^n]区间上f(x)=1/2^n
1/2020 属于 [1/5^5, 4/5^5] ==> f(1/2020) = 1/2^5 =1/32
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯