已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC、CD于E、F.试说明△CEF是等腰三角形.
答案:2 悬赏:20 手机版
解决时间 2021-12-31 23:22
- 提问者网友:原来太熟悉了会陌生
- 2021-12-31 18:06
已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC、CD于E、F.试说明△CEF是等腰三角形.
最佳答案
- 五星知识达人网友:独钓一江月
- 2021-12-31 19:26
解:∵∠ACB=90°,
∴∠B+∠BAC=90°,
∵CD⊥AB,
∴∠CAD+∠ACD=90°,
∴∠ACD=∠B,
∵AE是∠BAC的平分线,
∴∠CAE=∠EAB,
∵∠EAB+∠B=∠CEA,
∠CAE+∠DCA=∠CFE,
∴∠CFE=∠CEF,
∴CF=CE,
∴△CEF是等腰三角形.解析分析:首先根据条件∠ACB=90°,CD是AB边上的高,可证出∴∠B+∠BAC=90°,∠CAD+∠ACD=90°,再根据同角的补角相等可得到∠ACD=∠B,再利用三角形的外角与内角的关系可得到∠CFE=∠CEF,最后利用等角对等边即可得出
∴∠B+∠BAC=90°,
∵CD⊥AB,
∴∠CAD+∠ACD=90°,
∴∠ACD=∠B,
∵AE是∠BAC的平分线,
∴∠CAE=∠EAB,
∵∠EAB+∠B=∠CEA,
∠CAE+∠DCA=∠CFE,
∴∠CFE=∠CEF,
∴CF=CE,
∴△CEF是等腰三角形.解析分析:首先根据条件∠ACB=90°,CD是AB边上的高,可证出∴∠B+∠BAC=90°,∠CAD+∠ACD=90°,再根据同角的补角相等可得到∠ACD=∠B,再利用三角形的外角与内角的关系可得到∠CFE=∠CEF,最后利用等角对等边即可得出
全部回答
- 1楼网友:大漠
- 2021-12-31 19:53
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯