如图,在△ABC中,AB=AC=10,点D为BC上一点,过点D分别作DE∥AB交AC于点E,DE∥AC交AB于点F.求四边形AFDE的周长.
答案:2 悬赏:70 手机版
解决时间 2021-01-04 00:04
- 提问者网友:杀手的诗
- 2021-01-03 19:37
如图,在△ABC中,AB=AC=10,点D为BC上一点,过点D分别作DE∥AB交AC于点E,DE∥AC交AB于点F.求四边形AFDE的周长.
最佳答案
- 五星知识达人网友:我住北渡口
- 2021-01-03 20:25
解:∵AB=AC=10,
∴∠B=∠C,
由DF∥AC,得∠FDB=∠C=∠B,
∴FD=FB,
同理,得DE=EC.
∴四边形AFDE的周长=AF+AE+FD+DE
=AF+FB+AE+EC
=AB+AC
=10+10=20.
∴四边形AFDE的周长为20.解析分析:因为AB=AC,所以△ABC为等腰三角形,由DE∥AB,可证△CDE为等腰三角形,同理△BDF也为等腰三角形,根据腰长相等,将线段长转化,求周长.点评:本题利用了两直线平行,同位角相等和等边对等角及等角对等边来把四边形的周长转移到AB和ACH上求解的.
∴∠B=∠C,
由DF∥AC,得∠FDB=∠C=∠B,
∴FD=FB,
同理,得DE=EC.
∴四边形AFDE的周长=AF+AE+FD+DE
=AF+FB+AE+EC
=AB+AC
=10+10=20.
∴四边形AFDE的周长为20.解析分析:因为AB=AC,所以△ABC为等腰三角形,由DE∥AB,可证△CDE为等腰三角形,同理△BDF也为等腰三角形,根据腰长相等,将线段长转化,求周长.点评:本题利用了两直线平行,同位角相等和等边对等角及等角对等边来把四边形的周长转移到AB和ACH上求解的.
全部回答
- 1楼网友:往事埋风中
- 2021-01-03 21:58
我学会了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯