设f(x)在[0,1]上可微,且f(1)=2∫0~1/2 xf(x)dx,证明存在ξ属于(0,1),使f(ξ)+ξf'(ξ)=1
设f(x)在[0,1]上可微,且f(1)=2∫0~1/2 xf(x)dx,证明存在ξ属于(0,1),使f(ξ)+ξf’(
答案:1 悬赏:50 手机版
解决时间 2021-05-23 05:59
- 提问者网友:心如荒岛囚我终老
- 2021-05-22 05:59
最佳答案
- 五星知识达人网友:街头电车
- 2021-05-22 06:40
证明:由积分中值定理,存在η∈(0,1/2)使
2∫[0→1/2] xf(x) dx=2*ηf(η)*(1/2)=ηf(η)=f(1)
令g(x)=xf(x),则g(η)=ηf(η)=f(1),g(1)=f(1)
因此g(x)在[η,1]内满足罗尔中值定理条件,
即存在ξ∈(η,1),使g'(ξ)=0,且g'(x)=f(x)+xf '(x)
因此:g'(ξ)=0即:f(ξ)+ξf '(ξ)=0.证毕
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的选为满意回答按钮,谢谢.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯