【数学家的故事】求5个数学家的故事
答案:2 悬赏:30 手机版
解决时间 2021-02-07 23:59
- 提问者网友:锁深秋
- 2021-02-07 12:52
【数学家的故事】求5个数学家的故事
最佳答案
- 五星知识达人网友:北城痞子
- 2021-02-07 14:09
【答案】 高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ . +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ . +96+97+98+99+100
100+99+98+97+96+ . +4+3+2+1
=101+101+101+ . +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才
华罗庚的父亲是经营杂货店的小业主,由于经营惨淡,家境每况愈下,致使上中学不久的华罗庚辍学,当了杂货店的记账员.在繁琐、单调的劳作中,他并没有放弃最大的嗜好---数学研究.正在他发奋自学时,灾难从天而降---他染上了可怕的伤寒症,被医生判了“死刑”.然而,他竟然奇迹般地活了过来,但左腿却落下了终生残疾.他常挂在嘴边的是这样一句话:“所谓天才,就是靠坚持不断的努力.”这位没有大学文凭的数学家,凭着坚持不懈的努力,刻苦自学,于1930年,以《苏家驹之代数五次方程式不能成立的理由》的论文,而使中国数学界刮目相看.后被熊庆来教授推荐到清华大学数学系任助教 .在这里,他得益于熊庆来、杨武之的指导,学术上得以长足进步,并逐渐树立起他在世界数学界的地位.1948年应美国一所大学骋请任教.新中国成立后,他毅然放弃优越的工作和生活条件,携妻儿回国,担任清华大学数学系教授,后任中国科学院数学研究所所长.他十分重视和倡导把数学理论应用到生产实践中,并亲自组织和推广“优选法”、“统筹法”,使之在社会主义现代化建设中显示出了巨大的威力.他一生勤奋耕耘,共发表200余篇学术论文、10部专著.作为数学教育家,他培养出陈景润、王元、陆启铿等一批优秀的数学家,并形成了中国数学学派,有的人已成为世界级的数学家.
1985年6月12日,华罗庚在日本讲学时,因突发心肌梗塞而去世,终年75岁.一生以“最大希望就是工作到生命的最后一刻”自勉的华罗庚,将永远活在人民的心中.
第一个算出地球周长的埃拉托色尼
2000多年前,有人用简单的测量工具计算出地球的周长.这个人就是古希腊的埃拉托色尼(约公元前275—前194).
埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长.
细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子.但是,亚历山大城地面上的直立物却有一段很短的影子.他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成.从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角.按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长.埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几.他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近.这充分反映了埃拉托色尼的学说和智慧.
埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著.书中描述了地球的形状、大小和海陆分布.埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学.
1名数学家=10个师的由来
第二次世界大战中,美国曾经宣称:一名优秀的数学家的作用超过10个师的兵力.你可知这句话的由来吗?
1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的潜艇战搞得盟军焦头烂额.
为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,按数学角度来看这一问题,它有一定的规律.一定数量的船(如100艘)编队规模越小,编次就越多(如每次20艘,就要有5个编次);编次越多,与敌人相遇的概率就越大.比如5位同学放学都回自己家里,老师要找一位同学的话,随便去哪家都行,但若这5位同学都在其中某一家的话,老师要找几家才能找到,一次找到的可能性只有20%.
美国海军接受了数学家的建议,命令船队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降低为1%,大大减少了损失,保证了物资的及时供应.
.数学之神──阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古.父亲是位数学家兼天文学家.阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习.在这座号称智慧之都的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》.
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有力学之父的美称.其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明.其中就有著名的阿基米德原理,他在数学上也有着极为光辉灿烂的成就.尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用.
《砂粒计算》,是专讲计算方法和计算理论的一本著作.阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的.
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值.他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法.
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径.阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 .在这部著作中,他还提出了著名的阿基米德公理.
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四.他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来.
《论螺线》,是阿基米德对数学的出色贡献.他明确了螺线的定义,以及对螺线的面积的计算方法.在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法.
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题.
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律.
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积.
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本.通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生.
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯.不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德.
1+2+3+ . +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ . +96+97+98+99+100
100+99+98+97+96+ . +4+3+2+1
=101+101+101+ . +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才
华罗庚的父亲是经营杂货店的小业主,由于经营惨淡,家境每况愈下,致使上中学不久的华罗庚辍学,当了杂货店的记账员.在繁琐、单调的劳作中,他并没有放弃最大的嗜好---数学研究.正在他发奋自学时,灾难从天而降---他染上了可怕的伤寒症,被医生判了“死刑”.然而,他竟然奇迹般地活了过来,但左腿却落下了终生残疾.他常挂在嘴边的是这样一句话:“所谓天才,就是靠坚持不断的努力.”这位没有大学文凭的数学家,凭着坚持不懈的努力,刻苦自学,于1930年,以《苏家驹之代数五次方程式不能成立的理由》的论文,而使中国数学界刮目相看.后被熊庆来教授推荐到清华大学数学系任助教 .在这里,他得益于熊庆来、杨武之的指导,学术上得以长足进步,并逐渐树立起他在世界数学界的地位.1948年应美国一所大学骋请任教.新中国成立后,他毅然放弃优越的工作和生活条件,携妻儿回国,担任清华大学数学系教授,后任中国科学院数学研究所所长.他十分重视和倡导把数学理论应用到生产实践中,并亲自组织和推广“优选法”、“统筹法”,使之在社会主义现代化建设中显示出了巨大的威力.他一生勤奋耕耘,共发表200余篇学术论文、10部专著.作为数学教育家,他培养出陈景润、王元、陆启铿等一批优秀的数学家,并形成了中国数学学派,有的人已成为世界级的数学家.
1985年6月12日,华罗庚在日本讲学时,因突发心肌梗塞而去世,终年75岁.一生以“最大希望就是工作到生命的最后一刻”自勉的华罗庚,将永远活在人民的心中.
第一个算出地球周长的埃拉托色尼
2000多年前,有人用简单的测量工具计算出地球的周长.这个人就是古希腊的埃拉托色尼(约公元前275—前194).
埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长.
细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子.但是,亚历山大城地面上的直立物却有一段很短的影子.他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成.从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角.按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长.埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几.他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近.这充分反映了埃拉托色尼的学说和智慧.
埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著.书中描述了地球的形状、大小和海陆分布.埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学.
1名数学家=10个师的由来
第二次世界大战中,美国曾经宣称:一名优秀的数学家的作用超过10个师的兵力.你可知这句话的由来吗?
1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的潜艇战搞得盟军焦头烂额.
为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,按数学角度来看这一问题,它有一定的规律.一定数量的船(如100艘)编队规模越小,编次就越多(如每次20艘,就要有5个编次);编次越多,与敌人相遇的概率就越大.比如5位同学放学都回自己家里,老师要找一位同学的话,随便去哪家都行,但若这5位同学都在其中某一家的话,老师要找几家才能找到,一次找到的可能性只有20%.
美国海军接受了数学家的建议,命令船队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降低为1%,大大减少了损失,保证了物资的及时供应.
.数学之神──阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古.父亲是位数学家兼天文学家.阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习.在这座号称智慧之都的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》.
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有力学之父的美称.其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明.其中就有著名的阿基米德原理,他在数学上也有着极为光辉灿烂的成就.尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用.
《砂粒计算》,是专讲计算方法和计算理论的一本著作.阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的.
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值.他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法.
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径.阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 .在这部著作中,他还提出了著名的阿基米德公理.
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四.他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来.
《论螺线》,是阿基米德对数学的出色贡献.他明确了螺线的定义,以及对螺线的面积的计算方法.在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法.
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题.
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律.
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积.
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本.通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生.
正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯.不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德.
全部回答
- 1楼网友:痴妹与他
- 2021-02-07 14:23
你的回答很对
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯