如图AB是⊙O的直径,∠A=30°,延长OB到D使BD=OB.
(1)△OBC是否是等边三角形?说明理由;
(2)求证:DC是⊙O的切线.
如图AB是⊙O的直径,∠A=30°,延长OB到D使BD=OB.(1)△OBC是否是等边三角形?说明理由;(2)求证:DC是⊙O的切线.
答案:2 悬赏:20 手机版
解决时间 2021-04-11 19:43
- 提问者网友:嘚啵嘚啵
- 2021-04-10 20:52
最佳答案
- 五星知识达人网友:一叶十三刺
- 2021-04-10 22:10
(1)解:△OBC是等边三角形.理由如下:
∵∠A=30°,
∴∠BOC=60°,
∵OB=OC,
∴△OBC是等边三角形.
(2)证明:∵BD=OB,△OBC是等边三角形.
∴∠OCB=∠OBC=60°,BD=BC.
∴∠BCD=30°.
∴∠OCD=90°.
∴DC是⊙O的切线.解析分析:(1)根据同弧所对的圆周角等于它所对的圆心角的一半,可知∠BOC=60°,又OB=OC,依此可以证明△OBC是否是等边三角形.
(2)要证PC是⊙O的切线,只要证明∠DCO=90°即可.点评:本题考查了等边三角形的判定和切线的判定.
注意:有一个角是60°的等腰三角形是等边三角形;
要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
∵∠A=30°,
∴∠BOC=60°,
∵OB=OC,
∴△OBC是等边三角形.
(2)证明:∵BD=OB,△OBC是等边三角形.
∴∠OCB=∠OBC=60°,BD=BC.
∴∠BCD=30°.
∴∠OCD=90°.
∴DC是⊙O的切线.解析分析:(1)根据同弧所对的圆周角等于它所对的圆心角的一半,可知∠BOC=60°,又OB=OC,依此可以证明△OBC是否是等边三角形.
(2)要证PC是⊙O的切线,只要证明∠DCO=90°即可.点评:本题考查了等边三角形的判定和切线的判定.
注意:有一个角是60°的等腰三角形是等边三角形;
要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
全部回答
- 1楼网友:怀裏藏嬌
- 2021-04-10 23:30
这个答案应该是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯