棱锥的性质
答案:1 悬赏:60 手机版
解决时间 2021-03-20 02:56
- 提问者网友:焚苦与心
- 2021-03-19 23:26
棱锥的性质
最佳答案
- 五星知识达人网友:枭雄戏美人
- 2021-03-20 00:51
1.棱锥截面性质定理及推论
定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比。
推论1:如果棱锥被平行于底面的平面所截,则棱锥的侧棱和高被截面分成的线段比相等。
推论2:如果棱锥被平行于底面的平面所截,则截得的小棱锥与原棱锥的侧面积之比也等于它们对应高的平方比,或它们的底面积之比。
2.一些特殊棱锥的性质
侧棱长都相等的棱锥,它的顶点在底面内的射影是底面多边形的外接圆的圆心(外心),同时侧棱与底面所成的角都相等。
侧面与底面的交角都相等的棱锥,它的二面角都是锐二面角,所以顶点在底面内的射影在底多边形的内部,并且它到各边的距离相等即为底多边形的内切圆的圆心(内心),且各侧面上的斜高相等。如果侧面与底面所成角为α,则有S底=S侧cosα。如图画出了射影是外心和内心的情况。
3.棱锥的侧面积及全面积、体积公式、底面积公式
棱锥的侧面积及全面积
棱锥的侧面展开图是由各个侧面组成的,展开图的面积,就是棱锥的侧面积,则
S棱锥侧=S1+S2+…+Sn(其中Si,i=1,2…n为第i个侧面的面积)
S全=S棱锥侧+S底
棱锥的底面积公式:S底=长×宽
棱锥和圆锥统称锥体,锥体的体积公式是: v=1/3sh(s为锥体的底面积,h为锥体的高)。
斜棱锥的侧面积=各侧的面积之和
正棱锥的侧面积:S正棱锥侧=1/2chˊ(c为底面周长,hˊ为斜高)。
棱锥的中截面面积:S中截面=1/4S底面
4.正棱锥有下面一些性质
正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);
正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。
正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等。
正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h’,那么它的侧面积是 s=1/2ch
定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比。
推论1:如果棱锥被平行于底面的平面所截,则棱锥的侧棱和高被截面分成的线段比相等。
推论2:如果棱锥被平行于底面的平面所截,则截得的小棱锥与原棱锥的侧面积之比也等于它们对应高的平方比,或它们的底面积之比。
2.一些特殊棱锥的性质
侧棱长都相等的棱锥,它的顶点在底面内的射影是底面多边形的外接圆的圆心(外心),同时侧棱与底面所成的角都相等。
侧面与底面的交角都相等的棱锥,它的二面角都是锐二面角,所以顶点在底面内的射影在底多边形的内部,并且它到各边的距离相等即为底多边形的内切圆的圆心(内心),且各侧面上的斜高相等。如果侧面与底面所成角为α,则有S底=S侧cosα。如图画出了射影是外心和内心的情况。
3.棱锥的侧面积及全面积、体积公式、底面积公式
棱锥的侧面积及全面积
棱锥的侧面展开图是由各个侧面组成的,展开图的面积,就是棱锥的侧面积,则
S棱锥侧=S1+S2+…+Sn(其中Si,i=1,2…n为第i个侧面的面积)
S全=S棱锥侧+S底
棱锥的底面积公式:S底=长×宽
棱锥和圆锥统称锥体,锥体的体积公式是: v=1/3sh(s为锥体的底面积,h为锥体的高)。
斜棱锥的侧面积=各侧的面积之和
正棱锥的侧面积:S正棱锥侧=1/2chˊ(c为底面周长,hˊ为斜高)。
棱锥的中截面面积:S中截面=1/4S底面
4.正棱锥有下面一些性质
正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);
正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。
正棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等。
正棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h’,那么它的侧面积是 s=1/2ch
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯