已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.
已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=3
答案:1 悬赏:60 手机版
解决时间 2021-07-29 01:06
- 提问者网友:留有余香
- 2021-07-28 06:42
最佳答案
- 五星知识达人网友:长青诗
- 2021-07-28 08:13
BD=CD.证明:作BE⊥BC,AE⊥AC,两线相交于点E,∵△ABC是等腰直角三角形,即AC=BC,∴四边形AEBC是正方形,∵∠DAC=30°,∴∠DAE=60°,∵AD=AC,∴AD=AE,∴△AED是等边三角形,∴∠AED=60°,∴∠DEB=30°,在△ADC和△EDB中,
AD=ED
∠DAC=∠DEB=30°
AC=BE∴△ADC≌△EDB(SAS),∴BD=CD.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯