已知关于x的方程x2+(4k+1)x+2k-1=0.
(1)求证:此方程一定有两个不相等的实数根;
(2)若x1,x2是方程的两个实数根,且(x1-2)(x2-2)=2k-3,求k的值.
已知关于x的方程x2+(4k+1)x+2k-1=0.(1)求证:此方程一定有两个不相等的实数根;(2)若x1,x2是方程的两个实数根,且(x1-2)(x2-2)=2k
答案:2 悬赏:50 手机版
解决时间 2021-01-03 18:55
- 提问者网友:辞取
- 2021-01-03 00:29
最佳答案
- 五星知识达人网友:舍身薄凉客
- 2021-01-22 07:31
(1)证明:△=b2-4ac
=(4k+1)2-4(2k-1)
=16k2+8k+1-8k+4=16k2+5,
∵k2≥0,∴16k2≥0,∴16k2+5>0,
∴此方程有两个不相等的实数根.
(2)解:根据题意,得x1+x2=-(4k+1),x1x2=2k-1,
∴(x1-2)(x2-2)=x1x2-2(x1+x2)+4
=(2k-1)+2(4k+1)+4=2k-1+8k+2+4=10k+5
即10k+5=2k-3,
∴k=-1.解析分析:(1)需证得根的判别式恒为正值.
(2)(x1-2)(x2-2)=2k-3,即x1x2-2(x1+x2)+4=2k-3,依据根与系数的关系,列出关于k的方程求解则可.点评:本题考查了一元二次方程根与系数的关系及根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
=(4k+1)2-4(2k-1)
=16k2+8k+1-8k+4=16k2+5,
∵k2≥0,∴16k2≥0,∴16k2+5>0,
∴此方程有两个不相等的实数根.
(2)解:根据题意,得x1+x2=-(4k+1),x1x2=2k-1,
∴(x1-2)(x2-2)=x1x2-2(x1+x2)+4
=(2k-1)+2(4k+1)+4=2k-1+8k+2+4=10k+5
即10k+5=2k-3,
∴k=-1.解析分析:(1)需证得根的判别式恒为正值.
(2)(x1-2)(x2-2)=2k-3,即x1x2-2(x1+x2)+4=2k-3,依据根与系数的关系,列出关于k的方程求解则可.点评:本题考查了一元二次方程根与系数的关系及根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
全部回答
- 1楼网友:青灯有味
- 2021-01-22 07:47
这个问题我还想问问老师呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯