y=f(x)图像关于x=m对称的图像是什么
答案:2 悬赏:80 手机版
解决时间 2021-02-22 22:55
- 提问者网友:暮烟疏雨之际
- 2021-02-22 03:47
y=f(x)图像关于x=m对称的图像是什么
最佳答案
- 五星知识达人网友:不想翻身的咸鱼
- 2021-02-22 04:22
y=f(x)关于x=m时图像是:
f(m+x)=f(m-x)。
证明:令t=m+x,则x=t-m.
所以由f(m+x)=f(m-x),可得
f(t)=f[m-(t-m)]=f(2m-t),即f(t)=f(2m-t).
又设y=f(x)图像上任意一点(a,b),则它关于x=m的对称点为(2m-a,b),且f(a)=b.
令a=t,则由f(t)=f(2m-t)有f(a)=f(2m-a),
所以f(2m-a)=b,即y=f(x)的图像也过点(2m-a,b),
故y=f(x)图像关于x=m对称.
f(m+x)=f(m-x)。
证明:令t=m+x,则x=t-m.
所以由f(m+x)=f(m-x),可得
f(t)=f[m-(t-m)]=f(2m-t),即f(t)=f(2m-t).
又设y=f(x)图像上任意一点(a,b),则它关于x=m的对称点为(2m-a,b),且f(a)=b.
令a=t,则由f(t)=f(2m-t)有f(a)=f(2m-a),
所以f(2m-a)=b,即y=f(x)的图像也过点(2m-a,b),
故y=f(x)图像关于x=m对称.
全部回答
- 1楼网友:冷風如刀
- 2021-02-22 05:51
证明:令t=m+x,则x=t-m.
所以由f(m+x)=f(m-x),可得
f(t)=f[m-(t-m)]=f(2m-t),即f(t)=f(2m-t).
又设y=f(x)图像上任意一点(a,b),则它关于x=m的对称点为(2m-a,b),且f(a)=b.
令a=t,则由f(t)=f(2m-t)有f(a)=f(2m-a),
所以f(2m-a)=b,即y=f(x)的图像也过点(2m-a,b),
故y=f(x)图像关于x=m对称.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯