烧砖的原理
答案:2 悬赏:40 手机版
解决时间 2021-03-24 03:59
- 提问者网友:富士山上尢
- 2021-03-23 19:14
烧砖的原理
最佳答案
- 五星知识达人网友:荒野風
- 2021-03-23 19:46
古建砖瓦烧焙的原理
古建砖瓦坯经干燥后,再放入窑内,在加热焙烧过程中会发生一系列物理化学转变,这些转变取决于坯体的矿物组成、化学成分、焙烧温度、烧成时间、焙烧收缩、颗粒组成等,此外窑内气氛对焙烧效果也是一个主要的影响因素。转变的主要内容由:矿物结构的转变,生成新矿物;各组成部分发生分解、化合、再结晶、扩散、熔融、颜色、密度、吸水率等一系列的转变。最后变成具有一定颜色、致密坚硬、机械强度高的制品。
当坯体被加热时,首先排除原料矿物中的水分。在200℃以前,残余的自由水及大气吸附水被排除出去。在400~600℃时结构水自原料中分解,使坯体变得多孔、松弛,因而水分易于排除,加热速度可以加快。此阶段坯体强度有所下降。升温至573℃时,β-石英转化成-石英,体积增添0.82%,此时如升温更快,就有产生裂纹和使结构松弛的危险。600℃以后固相反应开始进行。在650~800℃,如有易熔物存在,开始烧结,产生收缩。在600~900℃,假如原料中含有较多的可燃物质,这些物质需要较长的时间完成氧化过程。在930~970℃,碳酸钙(CaCO3)分解成为氧化钙(CaO)和二氧化碳(CO2)。
焙烧使原料细颗粒通过硅酸盐化合作用,形成不可逆的固体。
冷空气通过冷却带的砖瓦垛,因为热交换过程制品被冷却到20~40℃。冷却的速率因原料而异,尤其冷至573℃,游离石英由型转变为β型,体积急剧收缩0.82%,使坯体中产生很大的内应力。此时应缓慢冷却,否则易使制品开裂玻璃相(约为2%或更少)及少量莫来石的产生是砖瓦制品强度提高的主要原因。焙烧温度为1000℃时,多孔砖的抗压强度比900℃时约高50%;焙烧温度950℃时多孔砖的抗压强度比900℃约高25%。与砖比较云主机,瓦通常需要再更高的温度下焙烧。
古建砖瓦坯经干燥后,再放入窑内,在加热焙烧过程中会发生一系列物理化学转变,这些转变取决于坯体的矿物组成、化学成分、焙烧温度、烧成时间、焙烧收缩、颗粒组成等,此外窑内气氛对焙烧效果也是一个主要的影响因素。转变的主要内容由:矿物结构的转变,生成新矿物;各组成部分发生分解、化合、再结晶、扩散、熔融、颜色、密度、吸水率等一系列的转变。最后变成具有一定颜色、致密坚硬、机械强度高的制品。
当坯体被加热时,首先排除原料矿物中的水分。在200℃以前,残余的自由水及大气吸附水被排除出去。在400~600℃时结构水自原料中分解,使坯体变得多孔、松弛,因而水分易于排除,加热速度可以加快。此阶段坯体强度有所下降。升温至573℃时,β-石英转化成-石英,体积增添0.82%,此时如升温更快,就有产生裂纹和使结构松弛的危险。600℃以后固相反应开始进行。在650~800℃,如有易熔物存在,开始烧结,产生收缩。在600~900℃,假如原料中含有较多的可燃物质,这些物质需要较长的时间完成氧化过程。在930~970℃,碳酸钙(CaCO3)分解成为氧化钙(CaO)和二氧化碳(CO2)。
焙烧使原料细颗粒通过硅酸盐化合作用,形成不可逆的固体。
冷空气通过冷却带的砖瓦垛,因为热交换过程制品被冷却到20~40℃。冷却的速率因原料而异,尤其冷至573℃,游离石英由型转变为β型,体积急剧收缩0.82%,使坯体中产生很大的内应力。此时应缓慢冷却,否则易使制品开裂玻璃相(约为2%或更少)及少量莫来石的产生是砖瓦制品强度提高的主要原因。焙烧温度为1000℃时,多孔砖的抗压强度比900℃时约高50%;焙烧温度950℃时多孔砖的抗压强度比900℃约高25%。与砖比较云主机,瓦通常需要再更高的温度下焙烧。
全部回答
- 1楼网友:撞了怀
- 2021-03-23 20:53
烧砖时如果用木炭直接烤砖坯,应该是熏成黑色的,而我们的砖是
红色的,证明不是直接用木材的火苗烧的。熏黑的部分继续在高温
下变红。
烧砖的原理是使用木炭,随着燃烧的进行,热气不断发出来,但是
在密闭的砖炉中热气难以向外泄漏,所以温度就会越来越高,达到
上千度高温,原理与烧瓷器相同。
红色的,证明不是直接用木材的火苗烧的。熏黑的部分继续在高温
下变红。
烧砖的原理是使用木炭,随着燃烧的进行,热气不断发出来,但是
在密闭的砖炉中热气难以向外泄漏,所以温度就会越来越高,达到
上千度高温,原理与烧瓷器相同。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯