有一种体育竞赛共含M个项目,有运动员A、B、C参加,在每个项目中,第一、二、三名分别得p1、p2、p3分,其
答案:2 悬赏:0 手机版
解决时间 2021-04-11 20:03
- 提问者网友:山高云阔
- 2021-04-11 05:28
有一种体育竞赛共含M个项目,有运动员A、B、C参加,在每个项目中,第一、二、三名分别得p1、p2、p3分,其中p1、p2、p3为正整数且p1>p2>p3,最后A得22分,B与C均得9分,B在百米赛中取得第一,求M的值,并问在跳高中谁取得第二名?
最佳答案
- 五星知识达人网友:封刀令
- 2021-04-11 05:35
分析:考虑三个得的总分,有方程:
M(p1+p2+p3)=22+9+9=40, ①
又 p1+p2+p3≥1+2+3=6, ②
∴6M≤M(p1+p2+p3)=40,从而M≤6.
由题设知至少有百米和跳高两个项目,从而M≥2,
又M|40,所以M可取2、4、5.
考虑M=2,则只有跳高和百米,而B百米第一,但总分仅9分,故必有:9≥p1+p3,∴p1≤8,这样A不可能得22分.
若M=4,由B可知:9≥p1+3p3,又p3≥1,所以p1≤6,若p1≤5,那么四项最多得20分,A就不可能得22分,故p1=6.
∵4(p1+p2+p3)=40,∴p2+p3=4.
故有:p2=3,p3=1,A最多得三个第一,一个第二,一共得分3×6+3=21<22,矛盾.
若M=5,这时由5(p1+p2+p3)=40,得:
p1+p2+p3=8.若p3≥2,则:
p1+p2+p3≥4+3+2=9,矛盾,故p3=1.
又p1必须大于或等于5,否则,A五次最高只能得20分,与题设矛盾,所以p1≥5.
若p1≥6,则p2+p3≤2,这也与题设矛盾,∴p1=5,p2+p3=3,即p2=2,p3=1.
A=22=4×5+2. 故A得了四个第一,一个第二;
B=9=5+4×1, 故B得了一个第一,四个第三;
C=9=4×2+1, 故C得了四个第二,一个第三.
C在跳高中谁取得第二名
M(p1+p2+p3)=22+9+9=40, ①
又 p1+p2+p3≥1+2+3=6, ②
∴6M≤M(p1+p2+p3)=40,从而M≤6.
由题设知至少有百米和跳高两个项目,从而M≥2,
又M|40,所以M可取2、4、5.
考虑M=2,则只有跳高和百米,而B百米第一,但总分仅9分,故必有:9≥p1+p3,∴p1≤8,这样A不可能得22分.
若M=4,由B可知:9≥p1+3p3,又p3≥1,所以p1≤6,若p1≤5,那么四项最多得20分,A就不可能得22分,故p1=6.
∵4(p1+p2+p3)=40,∴p2+p3=4.
故有:p2=3,p3=1,A最多得三个第一,一个第二,一共得分3×6+3=21<22,矛盾.
若M=5,这时由5(p1+p2+p3)=40,得:
p1+p2+p3=8.若p3≥2,则:
p1+p2+p3≥4+3+2=9,矛盾,故p3=1.
又p1必须大于或等于5,否则,A五次最高只能得20分,与题设矛盾,所以p1≥5.
若p1≥6,则p2+p3≤2,这也与题设矛盾,∴p1=5,p2+p3=3,即p2=2,p3=1.
A=22=4×5+2. 故A得了四个第一,一个第二;
B=9=5+4×1, 故B得了一个第一,四个第三;
C=9=4×2+1, 故C得了四个第二,一个第三.
C在跳高中谁取得第二名
全部回答
- 1楼网友:西岸风
- 2021-04-11 07:11
m=5,c第二,由b得过第一,p1<8,a22,m〉2,有三种分,m〈9,试验知,m=5,a5,5,5,5,2,b5,1,1,1,1,c1,2,2,2,2,b跳高倒一,a百米第二,跳高第一,c第二
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯