若存在实数p∈[-1,1],使得不等式px2+(p-3)x-3>0成立,则实数x的取值范围为________.
答案:2 悬赏:40 手机版
解决时间 2021-01-04 20:38
- 提问者网友:轮囘Li巡影
- 2021-01-03 21:27
若存在实数p∈[-1,1],使得不等式px2+(p-3)x-3>0成立,则实数x的取值范围为________.
最佳答案
- 五星知识达人网友:白昼之月
- 2021-01-03 22:19
(-3,-1)解析分析:把已知不等式整理为关于p的一元一次不等式,而不等式左边为关于p的一次函数,根据一次函数的性质可得此函数的最值只有在[-1,1]的端点取得,根据题意不等式恒成立可得当p=-1时,最小值大于0即可,故把p=-1代入不等式,得到关于x的不等式,求出不等式的解集即可得到x的取值范围.解答:不等式px2+(p-3)x-3>0可以化为:p(x2-3x)-3x-3>0,
这是一个关于p的一元一次不等式,
函数p(x2+x)-3x-3是关于p的一次函数,一次函数图象是直线,在定义域上是单调递增或递减,
P∈[-1,1]时,函数p(x2+x)-3x-3的最小值必定在端点-1或1处取到,
不等式px2+(p-3)x-3>0总成立,只需最小值大于0即可.
∴-x2+(-1-3)x-3>0,即x2+(1+3)x+3<0,
解得:-3<x<-1,
则实数x的取值范围为(-3,-1).
故
这是一个关于p的一元一次不等式,
函数p(x2+x)-3x-3是关于p的一次函数,一次函数图象是直线,在定义域上是单调递增或递减,
P∈[-1,1]时,函数p(x2+x)-3x-3的最小值必定在端点-1或1处取到,
不等式px2+(p-3)x-3>0总成立,只需最小值大于0即可.
∴-x2+(-1-3)x-3>0,即x2+(1+3)x+3<0,
解得:-3<x<-1,
则实数x的取值范围为(-3,-1).
故
全部回答
- 1楼网友:行雁书
- 2021-01-03 23:01
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯