已知a>0,b>0,且满足3a+b=a的平方+ab,则2a+b的最小值为
答案:1 悬赏:80 手机版
解决时间 2021-04-07 19:59
- 提问者网友:嗝是迷路的屁
- 2021-04-07 04:05
已知a>0,b>0,且满足3a+b=a的平方+ab,则2a+b的最小值为
最佳答案
- 五星知识达人网友:纵马山川剑自提
- 2021-04-07 04:54
解:
3a+b=a²+ab
(a-1)b=3a-a²
b>0,b=(3a-a²)/(a-1)
(3a-a²)/(a-1)>0
a(a-3)/(a-1)<0
a>0,12a+b
=2a+ (3a-a²)/(a-1)
=[2a(a-1)+(3a-a²)]/(a-1)
=(a²+a)/(a-1)
=(a²-a+2a-2+2)/(a-1)
=a +2 +2/(a-1)
=(a-1) +2/(a-1) +3
10
由均值不等式得:
(a-1)+ 2/(a-1)≥2√[(a-1)·2/(a-1)]=2√2
当且仅当a=√2 +1时取等号
(a-1) +2/(a-1) +3≥3+2√2
2a+b的最小值为3+2√2追问用基本不等式,2a=b,得出a=三分之五,b等于三分之十,为什么不行呢
3a+b=a²+ab
(a-1)b=3a-a²
b>0,b=(3a-a²)/(a-1)
(3a-a²)/(a-1)>0
a(a-3)/(a-1)<0
a>0,12a+b
=2a+ (3a-a²)/(a-1)
=[2a(a-1)+(3a-a²)]/(a-1)
=(a²+a)/(a-1)
=(a²-a+2a-2+2)/(a-1)
=a +2 +2/(a-1)
=(a-1) +2/(a-1) +3
10
由均值不等式得:
(a-1)+ 2/(a-1)≥2√[(a-1)·2/(a-1)]=2√2
当且仅当a=√2 +1时取等号
(a-1) +2/(a-1) +3≥3+2√2
2a+b的最小值为3+2√2追问用基本不等式,2a=b,得出a=三分之五,b等于三分之十,为什么不行呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯