永发信息网

北师大版数学八年级上第四章知识点

答案:2  悬赏:0  手机版
解决时间 2021-01-04 14:46
北师大版数学八年级上第四章知识点
最佳答案
第四章 四边形性质探索
一、四边形的相关概念
1、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性
3、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于 180°;
多边形的外角和定理:任意多边形的外角和等于360°。
6、设多边形的边数为n,则多边形的对角线共有 条。从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
二、平行四边形
1、平行四边形的定义
两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质
(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等
(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积
S平行四边形=底边长×高=ah
三、矩形
1、矩形的定义
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)矩形的对边平行且相等
(2)矩形的四个角都是直角
(3)矩形的对角线相等且互相平分
(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形
(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积
S矩形=长×宽=ab
四、菱形
1、菱形的定义
有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)菱形的四条边相等,对边平行
(2)菱形的相邻的角互补,对角相等
(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角
(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
4、菱形的面积
S菱形=底边长×高=两条对角线乘积的一半
五、正方形 (3~10分)
1、正方形的定义
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)正方形四条边都相等,对边平行
(2)正方形的四个角都是直角
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角
(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定
判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证它是菱形。
先证它是菱形,再证它是矩形。
4、正方形的面积
设正方形边长为a,对角线长为b
S正方形=
六、梯形
(一) 1、梯形的相关概念
一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定
(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:
一般梯形
梯形 直角梯形
特殊梯形
等腰梯形
(三)等腰梯形
1、等腰梯形的定义
两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质
(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)
(四)梯形的面积
(1)如图,
(2)梯形中有关图形的面积:
① ;
② ;

七、有关中点四边形问题的知识点:
(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;
(2)顺次连接矩形的四边中点所得的四边形是菱形;
(3)顺次连接菱形的四边中点所得的四边形是矩形;
(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;
(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;
(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;
(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;
八、中心对称图形
1、定义
在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
全部回答
正好我今年教八年级数学。没有时间自己整理,从网上下载的,我看不错,你借鉴一下。 北师大版初中数学定理知识点汇总 八年级(下册) 第一章一元一次不等式和一元一次不等式组 一.不等关系 ※1.一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式. ¤2.要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系. ※3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语. 非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0 非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0 二.不等式的基本性质 ※1.掌握不等式的基本性质,并会灵活运用: (1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c,a-c>b-c. (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc,. (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc, ※2.比较大小:(a、b分别表示两个实数或整式) 一般地: 如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b; 如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b; 如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b; 即: a>b<===>a-b>0 a=b<===>a-b=0 a<b<===>a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三.不等式的解集: ※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式. ※2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3.不等式的解集在数轴上的表示: 用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 四.一元一次不等式: ※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式. ※2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. ※3.解一元一次不等式的步骤: ①去分母; ②去括号; ③移项; ④合并同类项; ⑤系数化为1(不等号的改变问题) ※4.一元一次不等式基本情形为ax>b(或ax<b) ①当a>0时,解为; ②当a=0时,且b<0,则x取一切实数; 当a=0时,且b≥0,则无解; ③当a<0时,解为; ¤5.不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即: ①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设:设出适当的未知数; ③列:根据题中的不等关系,列出不等式; ④解:解出所列的不等式的解集; ⑤答:写出答案,并检验答案是否符合题意. 五.一元一次不等式与一次函数 六.一元一次不等式组 ※1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组. ※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定. ※3.解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 两个一元一次不等式组的解集的四种情况(a、b为实数,且a<b) 一元一次不等式解集图示叙述语言表达 x>b两大取较大 x>a两小取小 a<x<b大小交叉中间找 无解在大小分离没有解 (是空集) 第二章分解因式 一.分解因式 ※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. ※2.因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区别和联系: (1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二.提公共因式法 ※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: ※2.概念内涵: (1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式; (3)提公因式法的理论依据是乘法对加法的分配律,即: ※3.易错点点评: (1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”; (3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三.运用公式法 ※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法. ※2.主要公式: (1)平方差公式: (2)完全平方公式: ¤3.易错点点评: 因式分解要分解到底.如就没有分解到底. ※4.运用公式法: (1)平方差公式: ①应是二项式或视作二项式的多项式; ②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式: ①应是三项式; ②其中两项同号,且各为一整式的平方; ③还有一项可正负,且它是前两项幂的底数乘积的2倍. ※5.因式分解的思路与解题步骤: (1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法; (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四.分组分解法: ※1.分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ※2.概念内涵: 分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. ※3.注意:分组时要注意符号的变化. 五.十字相乘法: ※1.对于二次三项式,将a和c分别分解成两个因数的乘积,,,且满足,往往写成的形式,将二次三项式进行分解. 如: ※2.二次三项式的分解: ※3.规律内涵: (1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同. (2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. ※4.易错点点评: (1)十字相乘法在对系数分解时易出错; (2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确. 第三章分式 一.分式 ※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式. 整式a除以整式b,可以表示成的形式.如果除式b中含有字母,那么称为分式,对于任意一个分式,分母都不能为零. ※2.整式和分式统称为有理式,即有: ※3.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. ※4.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分. 二.分式的乘除法 ※1.分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 即:, ※2.分式乘方,把分子、分母分别乘方. 即: 逆向运用,当n为整数时,仍然有成立. ※3.分子与分母没有公因式的分式,叫做最简分式. 三.分式的加减法 ※1.分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. ※2.分式的加减法: 分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减. (1)同分母的分式相加减,分母不变,把分子相加减; 上述法则用式子表示是: (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减; 上述法则用式子表示是: ※3.概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解. 四.分式方程 ※1.解分式方程的一般步骤: ①在方程的两边都乘最简公分母,约去分母,化成整式方程; ②解这个整式方程; ③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去. ※2.列分式方程解应用题的一般步骤: ①审清题意; ②设未知数; ③根据题意找相等关系,列出(分式)方程; ④解方程,并验根; ⑤写出答案. 第四章相似图形 一.线段的比 ※1.如果选用同一个长度单位量得两条线段ab,cd的长度分别是m、n,那么就说这两条线段的比ab:cd=m:n,或写成. ※2.四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段. ※3.注意点: ①a:b=k,说明a是b的k倍; ②由于线段a、b的长度都是正数,所以k是正数; ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b之外,a:b≠b:a,与互为倒数; ⑤比例的基本性质:若,则ad=bc;若ad=bc,则 二.黄金分割 ※1.如图1,点c把线段ab分成两条线段ac和bc,如果,那么称线段ab被点c黄金分割,点c叫做线段ab的黄金分割点,ac与ab的比叫做黄金比. ※2.黄金分割点是最优美、最令人赏心悦目的点. 四.相似多边形 ¤1.一般地,形状相同的图形称为相似图形. ※2.对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比. 五.相似三角形 ※1.在相似多边形中,最为简简单的就是相似三角形. ※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比. ※3.全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上. ※4.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. ※5.相似三角形周长的比等于相似比. ※6.相似三角形面积的比等于相似比的平方. 六.探索三角形相似的条件 ※1.相似三角形的判定方法: 一般三角形直角三角形 基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似. ①两角对应相等; ②两边对应成比例,且夹角相等; ③三边对应成比例.①一个锐角对应相等; ②两条边对应成比例: a.两直角边对应成比例; b.斜边和一直角边对应成比例. ※2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2,l1//l2//l3,则. ※3.平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 八.相似的多边形的性质 ※相似多边形的周长等于相似比;面积比等于相似比的平方. 九.图形的放大与缩小 ※1.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形;这个点叫做位似中心;这时的相似比又称为位似比. ※2.位似图形上任意一对对应点到位似中心的距离之比等于位似比. ◎3.位似变换: ①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心. ②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形. ③利用位似的方法,可以把一个图形放大或缩小. 第五章数据的收集与处理 一.每周干家务活的时间 ※1.所要考察的对象的全体叫做总体; 把组成总体的每一个考察对象叫做个体; 从总体中取出的一部分个体叫做这个总体的一个样本. ※2.为一特定目的而对所有考察对象作的全面调查叫做普查; 为一特定目的而对部分考察对象作的调查叫做抽样调查. 二.数据的收集 ※1.抽样调查的特点:调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值. 而估计值是否接近实际情况还取决于样本选得是否有代表性. 第六章证明(一) 二.定义与命题 ※1.一般地,能明确指出概念含义或特征的句子,称为定义. 定义必须是严密的.一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现. ※2.可以判断它是正确的或是错误的句子叫做命题. 正确的命题称为真命题,错误的命题称为假命题. ※3.数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理. ※4.有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理. ¤5.根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明. 三.为什么它们平行 ※1.平行判定公理:同位角相等,两直线平行.(并由此得到平行的判定定理) ※2.平行判定定理:同旁内互补,两直线平行. ※3.平行判定定理:同错角相等,两直线平行. 四.如果两条直线平行 ※1.两条直线平行的性质公理:两直线平行,同位角相等; ※2.两条直线平行的性质定理:两直线平行,内错角相等; ※3.两条直线平行的性质定理:两直线平行,同旁内角互补. 五.三角形和定理的证明 ※1.三角形内角和定理:三角形三个内角的和等于180° ¤2.一个三角形中至多只有一个直角 ¤3.一个三角形中至多只有一个钝角 ¤4.一个三角形中至少有两个锐角 六.关注三角形的外角 ※1.三角形内角和定理的两个推论: 推论1:三角形的一个外角等于和它不相邻的两个内角的和; 推论2:三角形的一个外角大于任何一个和它不相邻的内角. (注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
一个人失踪了,派出所也查不到,我该怎么办,
天翼网关登录的密码忘记了怎么办?复位了也解
奔腾X80原车导航能放视频吗?如果能需要下载
air的键盘容易进灰怎么清理,Mac 综合与周边
新笔记本电脑怎么查硬盘通电时间和电池通电次
在水流很急的长江里,如何钓到鱼
600兆瓦发电机零序电压不允许超过多少
从锦州到朝阳开车得多长时间
神之墓地3.0.5弃坑隐藏人物隐藏物品合成
求[SKIP]丝绒公路全本txt
这个女团叫什么?跪求答案
中国古代是怎样造纸的?
杭州宏图三胞地址
公共烟道油烟机串味怎么解决
单选题Shegavemetwotickets________thatfi
推荐资讯
用图甲所示的装置“探究摩擦力跟压力大小的关
我国卫生部推广使用调味品“家乐”强化加铁酱
下列事例中,能表明分子在不断运动的是A.烟雾
AESOP手表是哪个国家的?
.California is the most populous state in
在电能表上标有“600revs/(kW?h)”的字样,
单选题下列对《忆秦娥·娄山关》的分析鉴赏,
, a sleepy driver killed twenty-two stud
卖车,对方不过户,我怎么办
鼓点与舞蹈的关系是什么?
答复的意思
Wewereawarethat,_____,thesituationwillgetw
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?