大自然中有哪些“动物数学家”,急需!快点!不要抄袭!多说一点!!!
答案:6 悬赏:40 手机版
解决时间 2021-03-04 08:26
- 提问者网友:wodetian
- 2021-03-03 12:39
大自然中有哪些“动物数学家”,急需!快点!不要抄袭!多说一点!!!
最佳答案
- 五星知识达人网友:低血压的长颈鹿
- 2021-03-03 13:10
在大自然中有许多奇妙的“动物数学家”。珊瑚虫能在自己身上奇妙地记下“日历”:它们每年在自己的体壁上“刻画”出365条环纹,显然是一天画一条。奇怪的是古生物学家发现,3亿5千万年前的珊瑚虫每年所“画”的环纹是400条。可见,珊瑚虫能根据天象的变化来“计算”、“记载”一年的时间,结果相当准确。
每天上午,当太阳升至与地平线的夹角呈30度时,蜜蜂中的“侦察蜂”就飞出蜂巢去寻找蜜源,返回后用特有的“舞蹈语言”报告花蜜的方位、距离、数量。于是蜂王便派工蜂去采蜜。奇妙的是,蜂王的“模糊数学”相当准确,派出的工蜂不多不少,恰好都能吃饱,并保证回巢酿蜜。
更奇妙的是蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。
蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数量比恰好也是“4、2、1”。
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。
猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。
鼹鼠几乎是瞎眼,但它在地底下挖掘的隧道,总是沿着90度转弯。
丹顶鹤总是成群结队排成“人”字形迁徙,而这“人”字形的夹角永远是110度。据科学家表明,这“人”字形夹角的一半恰好是金刚石结晶体的角度,这是巧合还是大自然的某种默契?至今还是不解之谜
蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数
蜜蜂:窝是正6边形的。
每天上午,当太阳升至与地平线的夹角呈30度时,蜜蜂中的“侦察蜂”就飞出蜂巢去寻找蜜源,返回后用特有的“舞蹈语言”报告花蜜的方位、距离、数量。于是蜂王便派工蜂去采蜜。奇妙的是,蜂王的“模糊数学”相当准确,派出的工蜂不多不少,恰好都能吃饱,并保证回巢酿蜜。
更奇妙的是蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。
蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数量比恰好也是“4、2、1”。
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。
猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。
鼹鼠几乎是瞎眼,但它在地底下挖掘的隧道,总是沿着90度转弯。
丹顶鹤总是成群结队排成“人”字形迁徙,而这“人”字形的夹角永远是110度。据科学家表明,这“人”字形夹角的一半恰好是金刚石结晶体的角度,这是巧合还是大自然的某种默契?至今还是不解之谜
蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数
蜜蜂:窝是正6边形的。
全部回答
- 1楼网友:骨子里都是戏
- 2021-03-03 17:01
有珊瑚虫,珊瑚虫每年会在自己的身体上刻画出365条环纹
- 2楼网友:荒野風
- 2021-03-03 16:11
在大自然中有许多奇妙的“动物数学家”。珊瑚虫能在自己身上奇妙地记下“日历”:它们每年在自己的体壁上“刻画”出365条环纹,显然是一天画一条。奇怪的是古生物学家发现,3亿5千万年前的珊瑚虫每年所“画”的环纹是400条。可见,珊瑚虫能根据天象的变化来“计算”、“记载”一年的时间,结果相当准确。
每天上午,当太阳升至与地平线的夹角呈30度时,蜜蜂中的“侦察蜂”就飞出蜂巢去寻找蜜源,返回后用特有的“舞蹈语言”报告花蜜的方位、距离、数量。于是蜂王便派工蜂去采蜜。奇妙的是,蜂王的“模糊数学”相当准确,派出的工蜂不多不少,恰好都能吃饱,并保证回巢酿蜜。
更奇妙的是蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。
蚂蚁的计算本领也十分高明
- 3楼网友:廢物販賣機
- 2021-03-03 14:58
珊瑚虫能在自己身体上奇妙的记下“日历”,他们每年在自己的体臂上“刻画”出365条环纹。
- 4楼网友:拾荒鲤
- 2021-03-03 14:49
蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。 蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数量比恰好也是“4、2、1”。 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。 猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。 鼹鼠几乎是瞎眼,但它在地底下挖掘的隧道,总是沿着90度转弯。 丹顶鹤总是成群结队排成“人”字形迁徙,而这“人”字形的夹角永远是110度。据科学家表明,这“人”字形夹角的一半恰好是金刚石结晶体的角度,这是巧合还是大自然的某种默契?至今还是不解之谜 。
- 5楼网友:逃夭
- 2021-03-03 14:14
蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。
蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数量比恰好也是“4、2、1”。
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。
猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。
鼹鼠几乎是瞎眼,但它在地底下挖掘的隧道,总是沿着90度转弯。
丹顶鹤总是成群结队排成“人”字形迁徙,而这“人”字形的夹角永远是110度。据科学家表明,这“人”字形夹角的一半恰好是金刚石结晶体的角度,这是巧合还是大自然的某种默契?至今还是不解之谜 。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯