【导数与微分】导数和微分的区别
答案:2 悬赏:60 手机版
解决时间 2021-02-21 03:14
- 提问者网友:wodetian
- 2021-02-20 14:26
【导数与微分】导数和微分的区别
最佳答案
- 五星知识达人网友:鱼忧
- 2021-02-20 14:32
【答案】 楼上的,问题是导数和微分的区别,你怎么说到微分和积分的区别了.
对于一元函数y=f(x)而言,导数和微分没什么差别.导数的几何意义是曲线y=f(x)的瞬时变化率,即切线斜率.微分是指函数因变量的增量和自变量增量的比值△y=△f(x+△x)-f(x),这里可以把自变量x看成是关于自身的函数y=x,那么△x=△y,所以微分另一种说法叫微商,dy/dx是两个变量的比值.一般来说,dy/dx=y'.
对于多元函数,如二元函数z=f(x,y)而言,导数变成了关于某个变量的偏导数.此时,微分符号dz/dx是个整体,不能拆开理解.而且,有个重要区别,可导不一定可微.即可导是可微的必要非充分条件.但是,有定理,若偏导数连续则函数可微.具体看全微分与偏导数有关章节.
THE END.
对于一元函数y=f(x)而言,导数和微分没什么差别.导数的几何意义是曲线y=f(x)的瞬时变化率,即切线斜率.微分是指函数因变量的增量和自变量增量的比值△y=△f(x+△x)-f(x),这里可以把自变量x看成是关于自身的函数y=x,那么△x=△y,所以微分另一种说法叫微商,dy/dx是两个变量的比值.一般来说,dy/dx=y'.
对于多元函数,如二元函数z=f(x,y)而言,导数变成了关于某个变量的偏导数.此时,微分符号dz/dx是个整体,不能拆开理解.而且,有个重要区别,可导不一定可微.即可导是可微的必要非充分条件.但是,有定理,若偏导数连续则函数可微.具体看全微分与偏导数有关章节.
THE END.
全部回答
- 1楼网友:蓝房子
- 2021-02-20 15:26
回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯