求极限:lim(x→0)(tanx-sinx)/x^3
求极限:lim(x→0)(tanx-sinx)/x^3
答案:1 悬赏:70 手机版
解决时间 2021-04-11 04:48
- 提问者网友:最爱你的唇
- 2021-04-10 17:45
最佳答案
- 五星知识达人网友:怀裏藏嬌
- 2021-04-10 18:24
那我就不用洛必达法则了呵呵~,用定理lim[x→0] sinx/x=1
lim[x→0] (tanx-sinx)/x³
=lim[x→0] (sinx/cosx-sinx)/x³
=lim[x→0] (sinx-sinxcosx)/(x³cosx)
=lim[x→0] sinx(1-cosx)/(x³cosx)
=lim[x→0] sin³x(1-cosx)/(x³sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/(sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/[(1-cos²x)cosx]
=lim[x→0] (sinx/x)³·(1-cosx)/[(1+cosx)(1-cosx)cosx]
=lim[x→0] (sinx/x)³·1/[(1+cosx)cosx]
=1·1/(1+1)
=1/2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯