观察下列各式:
(x-1)(x+1)=x2-1,
(x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1,
(x-1)(x4+x3+x2+x+1)=x5-1,
(1)根据前面各式的规律可得:(x-1)(xn+xn-1+…+x2+x+1)=______(其中n为正整数).
(2)根据(1)求1+2+22+23+…+262+263的值,并求出它的个位数字.
观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,(x-1)(x4+x3+x2+x+1)
答案:2 悬赏:20 手机版
解决时间 2021-12-21 05:16
- 提问者网友:山高云阔
- 2021-12-20 23:06
最佳答案
- 五星知识达人网友:慢性怪人
- 2021-12-21 00:22
解:(1)根据各式的规律可得:(x-1)(xn+xn-1+…+x2+x+1)=xn+1-1;
(2)根据各式的规律得:1+2+22+23+…+262+263=(2-1)(263+262+…+23+22+2+1)=264-1,
∵21=2,22=4,23=8,24=16,25=32,…,且64÷4=16,
∴264个位上数字为6,
则1+2+22+23+…+262+263的个位数字为5.
故
(2)根据各式的规律得:1+2+22+23+…+262+263=(2-1)(263+262+…+23+22+2+1)=264-1,
∵21=2,22=4,23=8,24=16,25=32,…,且64÷4=16,
∴264个位上数字为6,
则1+2+22+23+…+262+263的个位数字为5.
故
全部回答
- 1楼网友:慢性怪人
- 2021-12-21 01:25
我好好复习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯