如图,在梯形ABCD,AD∥BC,AB=CD,P为梯形内一点,且PB=PC,求证:PA=PD.
答案:2 悬赏:50 手机版
解决时间 2021-03-22 14:33
- 提问者网友:嘚啵嘚啵
- 2021-03-21 14:15
如图,在梯形ABCD,AD∥BC,AB=CD,P为梯形内一点,且PB=PC,求证:PA=PD.
最佳答案
- 五星知识达人网友:廢物販賣機
- 2021-03-21 14:26
证明:∵在梯形ABCD,AD∥BC,AB=CD,
∴∠ABC=∠DCB,
∵PB=PC,
∴∠PBC=∠PCB,
∴∠ABC-∠PBC=∠DCB-∠PCB即∠ABP=∠DCP,
又∵AB=DC,PB=PC,
∴△ABP≌△DCP.
∴PA=PD.解析分析:由AD∥BC,AB=CD,可得∠ABC=∠DCB(等腰梯形的同一底上的角相等);又由PB=PC,根据等角对等边,可得∠PBC=∠PCB,即可求得∠ABP=∠DCP,根据SAS,易证得△ABP≌△DCP;即可证得PA=PD.点评:此题考查了等腰梯形的性质与等腰三角形的性质,以及全等三角形的判定.此题难度不大,注意数形结合思想的应用.
∴∠ABC=∠DCB,
∵PB=PC,
∴∠PBC=∠PCB,
∴∠ABC-∠PBC=∠DCB-∠PCB即∠ABP=∠DCP,
又∵AB=DC,PB=PC,
∴△ABP≌△DCP.
∴PA=PD.解析分析:由AD∥BC,AB=CD,可得∠ABC=∠DCB(等腰梯形的同一底上的角相等);又由PB=PC,根据等角对等边,可得∠PBC=∠PCB,即可求得∠ABP=∠DCP,根据SAS,易证得△ABP≌△DCP;即可证得PA=PD.点评:此题考查了等腰梯形的性质与等腰三角形的性质,以及全等三角形的判定.此题难度不大,注意数形结合思想的应用.
全部回答
- 1楼网友:枭雄戏美人
- 2021-03-21 14:49
这下我知道了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯