有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入格式
N(N 堆纸牌,1 <= N <= 100)
A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出格式
所有堆均达到相等时的最少移动次数。
样例输入
4
9 8 17 6
样例输出
3
program exa;
var n,i,s:integer;
ave,tot:real;
a:array[1..100] of real;
begin
tot:=0;s:=0;
read(n);
for i:=1 to n do read(a[i]);
for i:=1 to n do tot:=tot+a[i];
ave:=tot/n;
for i:=1 to n-1 do
begin
if a[i]<>0 then a[i+1]:=a[i+1]+a[i]-ave;s:=s+1;
end;
write(s);
end.