什么叫数学模型
答案:1 悬赏:50 手机版
解决时间 2021-01-29 01:36
- 提问者网友:原来太熟悉了会陌生
- 2021-01-28 08:43
什么叫数学模型
最佳答案
- 五星知识达人网友:西风乍起
- 2021-01-28 09:15
问题一:数学建模是什么? 数学建模的详细定义网上多的我就不阐述了,说一点其他的~~
数学的主要发展方向是数学结合计算盯。运用数学的算法结合计算机技术解决实际问题,将来你会比单纯学计算机的水平高出一个档次,因为你的算法比他们的先进。而这也就是数学建模竞赛的主要考察的。
数模比赛的含金量也是比较高的,你参加比赛得了名次,完全可以证明你是有一定实力的~~
你担心数学成绩不好,其实是没有必要的,我参加过几次比赛,用的数学知识并没有很高深,高中数学也能解决很多问题了,主要就是优化,模拟,我觉得考验个人思维能力多一点,况且数学、计算机、写作三个方面呢,你只要有一方面特长就可以了~~
如果你去参加比赛,真的会给你很多收获,学到很多新知识不谈,还会让你了解原来学的东西可以这么用在生活中,会提起学习的兴趣,真的,我强烈建议你去学一些~~参加比赛~~如果还有其他问题你可以问的呵呵~~~我建模和写作都弄过,编程差点~~问题二:什么是模型思想 】 数鸡模型思想方法是高中教学中最常见、应用最为广泛的数学思想方法之一。而高一数学是学生在高中学习阶段的起点,教师在本书的教学过程中恰当地渗透数学模型思想方法,不仅可以使本书的数学问题形象化,易于学生理解,还可提高学生独立分析问题的能动性及思维能力,形成良好的思维习惯。同时作为师范类数学专业本科毕业生,一般即将从事高一数学的教学工作,本文可以起到一定的指导作用。本文参考了多种文献资料并结合当前相关的数学教学理论,从数学课堂中出现的具体过程及方式出发,主要针对如何在高一数学的教学中渗透数学模型思想方法以及在使用过程中应注意哪些问题等进行了讨论。【关 键 词】 数学模型;思维;教学;构造 在中学中,一般地,数学模型是指针对或参照某种客观事物的主要特征、主要关系,采用形式化的数学语言,抽象概括地或近似地表达出来的一种数学结构模型。一切数学概念、数学理论体系、各种数学公式、各种方程式、各种函数关系,以及由公式系列构成的算法系统等等都可以称为数学模型,这些模型经过教学法的加工和逻辑处理,有机地结合在一起,构成了中学的数学知识体系。在这种意义下,我们可以说中学数学教学实际上是数学系模型的教学,而通过构造数学模型来解决有关问题的方法称为数学模型思想方法。随着科学技术的发展,特别是现代计算机的广泛应用和科学技术的数字化,通过构造数学模型来解决实际问题的方法正广泛应用于自然科学、工程技术以及社会科学等多个领域。在中学数学教学中恰当地渗透数学模型思想方法,可使抽象的数学知识形象化,对培养学生的观察分析能力,逻辑思维能力有很大的作用。使学生在学习中更容易理解、加深记忆,能够灵活地运用所学和数学知识。高一数学是学生在整个高中数学学习阶段的起点,学生们由于刚经过初中的学习,已具备一定的初等数学知识和形成了基本的思维方式,但是对数学模型思想方法没有形成系统的认知和足够的实践运用经验。而且在高一数学的教学中涉及高中阶段运用最广、最多的内容——函数,所以在高中的开始阶段渗透数学模型思想方法,有利于学生在以后的学习中逐步形成良好的思维习惯,提高学生的数学知识认识能力和解题能力。当前素质教育提倡的是由重教法到重学法的教学方式的转变,学生作为学习的主体而教师是引导者。如何发掘教材内容潜在的数学模型思想方法,并在教学中潜移默化地引导学生使用它,这是作为中学数学教师应具备的能力。数学模型思想方法在本教材的教学中可运用于常规的数学问题,也可用于其它实际性的问题。建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化。全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环,可用流程图表示如下:图1 数学模型思想方法应用流程图当然我们在常规的数学解题过程中,更常见的是把现有的问题反映的数学模型转化成另一种数学模型以得到最佳的解题途径。所以在多数情况下,对于不同的题目运用数学模型思想方法时具体的步骤也有所不同,但最关键是如何建立一个恰当的模型以使问题更易于解决。问题三:什么是数学模型 中国数学建模
www.shumo.com/main/
全国大学生数学建模主页
csiam.edu.cn/mcm/
国际数学建模主页
csiam.edu.cn/mcm/
浙江大学数学建模站
csiam.edu.cn/mcm/
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数; 3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
数学建模需要丰富的数学知......余下全文>>问题四:如果几年来一直保持一样的体重(158cm,51.5KG),减肥能成功吗? 是呀不胖啊你,保持就很好了问题五:1.什么是数学模型?数学建模的一般步骤是什么? 2.数学建模需要具备哪些能力和知识? 答的好悬赏加 100分数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一.
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识.
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法.
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模.
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等.
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等.
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等.
参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要...余下全文>>问题六:什么是数学模型 中国数学建模
www.shumo.com/main/
全国大学生数学建模主页
csiam.edu.cn/mcm/
国际数学建模主页
csiam.edu.cn/mcm/
浙江大学数学建模站
csiam.edu.cn/mcm/
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数; 3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
数学建模需要丰富的数学知......余下全文>>问题七:数学建模是什么? 数学建模的详细定义网上多的我就不阐述了,说一点其他的~~
数学的主要发展方向是数学结合计算盯。运用数学的算法结合计算机技术解决实际问题,将来你会比单纯学计算机的水平高出一个档次,因为你的算法比他们的先进。而这也就是数学建模竞赛的主要考察的。
数模比赛的含金量也是比较高的,你参加比赛得了名次,完全可以证明你是有一定实力的~~
你担心数学成绩不好,其实是没有必要的,我参加过几次比赛,用的数学知识并没有很高深,高中数学也能解决很多问题了,主要就是优化,模拟,我觉得考验个人思维能力多一点,况且数学、计算机、写作三个方面呢,你只要有一方面特长就可以了~~
如果你去参加比赛,真的会给你很多收获,学到很多新知识不谈,还会让你了解原来学的东西可以这么用在生活中,会提起学习的兴趣,真的,我强烈建议你去学一些~~参加比赛~~如果还有其他问题你可以问的呵呵~~~我建模和写作都弄过,编程差点~~问题八:举例说明什么是数学模型 数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。具体来说,数学模型就是为了某种目的,用字母、数字及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。
数学的主要发展方向是数学结合计算盯。运用数学的算法结合计算机技术解决实际问题,将来你会比单纯学计算机的水平高出一个档次,因为你的算法比他们的先进。而这也就是数学建模竞赛的主要考察的。
数模比赛的含金量也是比较高的,你参加比赛得了名次,完全可以证明你是有一定实力的~~
你担心数学成绩不好,其实是没有必要的,我参加过几次比赛,用的数学知识并没有很高深,高中数学也能解决很多问题了,主要就是优化,模拟,我觉得考验个人思维能力多一点,况且数学、计算机、写作三个方面呢,你只要有一方面特长就可以了~~
如果你去参加比赛,真的会给你很多收获,学到很多新知识不谈,还会让你了解原来学的东西可以这么用在生活中,会提起学习的兴趣,真的,我强烈建议你去学一些~~参加比赛~~如果还有其他问题你可以问的呵呵~~~我建模和写作都弄过,编程差点~~问题二:什么是模型思想 】 数鸡模型思想方法是高中教学中最常见、应用最为广泛的数学思想方法之一。而高一数学是学生在高中学习阶段的起点,教师在本书的教学过程中恰当地渗透数学模型思想方法,不仅可以使本书的数学问题形象化,易于学生理解,还可提高学生独立分析问题的能动性及思维能力,形成良好的思维习惯。同时作为师范类数学专业本科毕业生,一般即将从事高一数学的教学工作,本文可以起到一定的指导作用。本文参考了多种文献资料并结合当前相关的数学教学理论,从数学课堂中出现的具体过程及方式出发,主要针对如何在高一数学的教学中渗透数学模型思想方法以及在使用过程中应注意哪些问题等进行了讨论。【关 键 词】 数学模型;思维;教学;构造 在中学中,一般地,数学模型是指针对或参照某种客观事物的主要特征、主要关系,采用形式化的数学语言,抽象概括地或近似地表达出来的一种数学结构模型。一切数学概念、数学理论体系、各种数学公式、各种方程式、各种函数关系,以及由公式系列构成的算法系统等等都可以称为数学模型,这些模型经过教学法的加工和逻辑处理,有机地结合在一起,构成了中学的数学知识体系。在这种意义下,我们可以说中学数学教学实际上是数学系模型的教学,而通过构造数学模型来解决有关问题的方法称为数学模型思想方法。随着科学技术的发展,特别是现代计算机的广泛应用和科学技术的数字化,通过构造数学模型来解决实际问题的方法正广泛应用于自然科学、工程技术以及社会科学等多个领域。在中学数学教学中恰当地渗透数学模型思想方法,可使抽象的数学知识形象化,对培养学生的观察分析能力,逻辑思维能力有很大的作用。使学生在学习中更容易理解、加深记忆,能够灵活地运用所学和数学知识。高一数学是学生在整个高中数学学习阶段的起点,学生们由于刚经过初中的学习,已具备一定的初等数学知识和形成了基本的思维方式,但是对数学模型思想方法没有形成系统的认知和足够的实践运用经验。而且在高一数学的教学中涉及高中阶段运用最广、最多的内容——函数,所以在高中的开始阶段渗透数学模型思想方法,有利于学生在以后的学习中逐步形成良好的思维习惯,提高学生的数学知识认识能力和解题能力。当前素质教育提倡的是由重教法到重学法的教学方式的转变,学生作为学习的主体而教师是引导者。如何发掘教材内容潜在的数学模型思想方法,并在教学中潜移默化地引导学生使用它,这是作为中学数学教师应具备的能力。数学模型思想方法在本教材的教学中可运用于常规的数学问题,也可用于其它实际性的问题。建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化。全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环,可用流程图表示如下:图1 数学模型思想方法应用流程图当然我们在常规的数学解题过程中,更常见的是把现有的问题反映的数学模型转化成另一种数学模型以得到最佳的解题途径。所以在多数情况下,对于不同的题目运用数学模型思想方法时具体的步骤也有所不同,但最关键是如何建立一个恰当的模型以使问题更易于解决。问题三:什么是数学模型 中国数学建模
www.shumo.com/main/
全国大学生数学建模主页
csiam.edu.cn/mcm/
国际数学建模主页
csiam.edu.cn/mcm/
浙江大学数学建模站
csiam.edu.cn/mcm/
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数; 3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
数学建模需要丰富的数学知......余下全文>>问题四:如果几年来一直保持一样的体重(158cm,51.5KG),减肥能成功吗? 是呀不胖啊你,保持就很好了问题五:1.什么是数学模型?数学建模的一般步骤是什么? 2.数学建模需要具备哪些能力和知识? 答的好悬赏加 100分数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一.
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识.
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法.
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模.
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等.
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等.
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等.
参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要...余下全文>>问题六:什么是数学模型 中国数学建模
www.shumo.com/main/
全国大学生数学建模主页
csiam.edu.cn/mcm/
国际数学建模主页
csiam.edu.cn/mcm/
浙江大学数学建模站
csiam.edu.cn/mcm/
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。
简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
数学建模
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。 测试分析方法也叫做系统辩识。
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数; 3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。
数学建模需要丰富的数学知......余下全文>>问题七:数学建模是什么? 数学建模的详细定义网上多的我就不阐述了,说一点其他的~~
数学的主要发展方向是数学结合计算盯。运用数学的算法结合计算机技术解决实际问题,将来你会比单纯学计算机的水平高出一个档次,因为你的算法比他们的先进。而这也就是数学建模竞赛的主要考察的。
数模比赛的含金量也是比较高的,你参加比赛得了名次,完全可以证明你是有一定实力的~~
你担心数学成绩不好,其实是没有必要的,我参加过几次比赛,用的数学知识并没有很高深,高中数学也能解决很多问题了,主要就是优化,模拟,我觉得考验个人思维能力多一点,况且数学、计算机、写作三个方面呢,你只要有一方面特长就可以了~~
如果你去参加比赛,真的会给你很多收获,学到很多新知识不谈,还会让你了解原来学的东西可以这么用在生活中,会提起学习的兴趣,真的,我强烈建议你去学一些~~参加比赛~~如果还有其他问题你可以问的呵呵~~~我建模和写作都弄过,编程差点~~问题八:举例说明什么是数学模型 数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义。数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。具体来说,数学模型就是为了某种目的,用字母、数字及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯