【二次型化为标准型】求一个正交变换x=py使二次型f=2x1^2+3x2^2+3x3^2+4x2x3化为标准型
答案:2 悬赏:70 手机版
解决时间 2021-01-25 00:22
- 提问者网友:轻浮
- 2021-01-24 03:00
【二次型化为标准型】求一个正交变换x=py使二次型f=2x1^2+3x2^2+3x3^2+4x2x3化为标准型
最佳答案
- 五星知识达人网友:轮獄道
- 2021-01-24 03:37
【答案】 二次型的矩阵 A=
2 0 0
0 3 2
0 2 3
|A-λE| =
2-λ 0 0
0 3-λ 2
0 2 3-λ
= (2-λ)[(3-λ)^2-2^2]
= (1-λ)(2-λ)(5-λ).
所以 A 的特征值为 1,2,5.
(A-E)X=0 的基础解系为 a1=(0,1,-1)'.
(A-2E)X=0 的基础解系为 a2=(1,0,0)'.
(A-5E)X=0 的基础解系为 a3=(0,1,1)'.
a1,a2,a3 单位化得
b1=(0,1/√2,-1/√2)'
b2=(1,0,0)'
b3=(0,1/√2,1/√2)'
令 P = (b1,b2,b3),则 P 是正交矩阵,且
P^-1AP = diag(1,2,5).
故 X=PY 是正交变换,满足
f = y1^2+2y2^2+5y3^2. 追问: 不好意思,最后四行没看懂。 追答: P = (b1,b2,b3), 是以 b1,b2,b3 为列向量构成的矩阵 diag(1,2,5) 是对角矩阵
2 0 0
0 3 2
0 2 3
|A-λE| =
2-λ 0 0
0 3-λ 2
0 2 3-λ
= (2-λ)[(3-λ)^2-2^2]
= (1-λ)(2-λ)(5-λ).
所以 A 的特征值为 1,2,5.
(A-E)X=0 的基础解系为 a1=(0,1,-1)'.
(A-2E)X=0 的基础解系为 a2=(1,0,0)'.
(A-5E)X=0 的基础解系为 a3=(0,1,1)'.
a1,a2,a3 单位化得
b1=(0,1/√2,-1/√2)'
b2=(1,0,0)'
b3=(0,1/√2,1/√2)'
令 P = (b1,b2,b3),则 P 是正交矩阵,且
P^-1AP = diag(1,2,5).
故 X=PY 是正交变换,满足
f = y1^2+2y2^2+5y3^2. 追问: 不好意思,最后四行没看懂。 追答: P = (b1,b2,b3), 是以 b1,b2,b3 为列向量构成的矩阵 diag(1,2,5) 是对角矩阵
全部回答
- 1楼网友:长青诗
- 2021-01-24 04:46
这个答案应该是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯