在等边三角形ABC内有一点P,使角APB、角BPC、角APC之比为5:6:7,求以AP、BP、CP为边的三角形三内角之比.
在等边三角形ABC内有一点P,使角APB、角BPC、角APC之比为5:6:7,求以AP、BP、CP为边的三角形三内角之比
答案:2 悬赏:30 手机版
解决时间 2021-12-31 10:51
- 提问者网友:泪痣哥哥
- 2021-12-30 15:11
最佳答案
- 五星知识达人网友:神也偏爱
- 2021-12-30 15:39
三个内角的比为2:3:4.理由:
在AP的一侧以AP长为边作等边△APD,使D位于△ABC外AC边一侧,
易证△ABP≌△ACD(SAS),
因此,CD=PB,PD=PA,△APD就是以AP、BP、CP为边的三角形
设∠APB=5x,∠BPC=6x,∠APC=7x,
由周角为360°,得∠APB+∠BPC+∠APC=18x=360°,∴x=20°,
于是,∠APC=140°,∠APB=100°,∠BPC=120°.
∠DPC=∠APC-60°=80°,
∠PDC=∠ADC-∠ADP=∠APB-60°=40°,
从而∠PCD=180°-(∠DPC+PDC)=60°
所以,三内角的比为40°:60°:80°=2:3:4
全部回答
- 1楼网友:野慌
- 2021-12-30 16:53
我也是这个答案
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯