在线等!高手进来 如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF
∠BFC=90°,BF=FC,H为BC中点(1)求证,FH//平面EDB
(2)求证:AC⊥平面EDB
(3)求四面体B-DEFD的体积
在线等!高手进来 如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF
答案:1 悬赏:0 手机版
解决时间 2021-07-27 09:06
- 提问者网友:泪痣哥哥
- 2021-07-27 05:18
最佳答案
- 五星知识达人网友:春色三分
- 2021-07-27 05:49
(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且 GH= AB 又EF‖AB且 EF= AB
∴EF‖GH.且 EF=GH ∴四边形EFHG为平行四边形.
∴EG‖FH,而EG 平面EDB,∴FH‖平面EDB.
(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.
又EF‖AB,∴ EF⊥BC.而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.
∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.
∴ FH⊥AC.又FH‖EG,∴ AC⊥EG.又AC⊥BD,EG∩BD=G,
∴ AC⊥平面EDB.
∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.
∴ BF为四面体B-DEF的高.又BC=AB=2,∴ BF=FC= 根号2
Vb-def=1/3 X 1/2 X 1 X 根号2 X 根号2 = 1/3
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯