1至9这9个数字,按图示的次序排成一个圆圈.请你在某两个数字之间剪开,分别按顺时针和逆时针次序形成两个九位数(例如,在l和7之间剪开,得到的两个数是193426857和758624391).如果要求剪开后得到的两个九位数的差能被396整除,那么剪开处左右两个数字的乘积是多少?
1至9这9个数字,按图示的次序排成一个圆圈.请你在某两个数字之间剪开,分别按顺时针和逆时针次序形成两
答案:2 悬赏:50 手机版
解决时间 2021-04-23 02:40
- 提问者网友:疯子也有疯子的情调
- 2021-04-22 18:40
最佳答案
- 五星知识达人网友:上分大魔王
- 2021-04-22 19:13
因为反序数的差是99的倍数,所以互为反序的两个九位数的差,一定能被99整除.而396=99×4,所以我们只用考察它能否能被4整除.
于是只用观察原序数、反序数的末两位数字的差能否被4整除,显然只有当剪开处两个数的奇偶性相同时才有可能.
注意图中的具体数字,有(3,4)处、(8,5)处的两个数字奇偶性均不相同,所以一定不满足.
而剩下的几个位置奇偶性相同,有可能满足.
进一步验证,有(9,3)处剪开的末两位数字之差为43-19=24,(4,2),(2,6),(6,8),(5,7),(7,1),(1,9)处剪开的末两位数字之差为62-3=28.86-42=44,58-26=32,85-17=68,91-57=34,71-39=32.
所以从(9,3),(4,2),(2,6),(6,8),(5,7),(1,9)处剪开,所得的两个互为反序的九位数的差才是396的倍数.
(9,3),(4,2),(2,6),(6,8),(5,7),(1,9)处左右两个数的乘积为27,8,12,48,35,9.
于是只用观察原序数、反序数的末两位数字的差能否被4整除,显然只有当剪开处两个数的奇偶性相同时才有可能.
注意图中的具体数字,有(3,4)处、(8,5)处的两个数字奇偶性均不相同,所以一定不满足.
而剩下的几个位置奇偶性相同,有可能满足.
进一步验证,有(9,3)处剪开的末两位数字之差为43-19=24,(4,2),(2,6),(6,8),(5,7),(7,1),(1,9)处剪开的末两位数字之差为62-3=28.86-42=44,58-26=32,85-17=68,91-57=34,71-39=32.
所以从(9,3),(4,2),(2,6),(6,8),(5,7),(1,9)处剪开,所得的两个互为反序的九位数的差才是396的倍数.
(9,3),(4,2),(2,6),(6,8),(5,7),(1,9)处左右两个数的乘积为27,8,12,48,35,9.
全部回答
- 1楼网友:你哪知我潦倒为你
- 2021-04-22 20:33
看看手表,钟,指针转的方向就是顺时针
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯