RT,要快,要详细.好的追加50分
如图,已知△ABC和△ADE都是等腰直角三角形,点M为EC中点,证△BMD为等腰直角三角形
答案:2 悬赏:30 手机版
解决时间 2021-05-03 19:01
- 提问者网友:沉默菋噵
- 2021-05-03 05:31
最佳答案
- 五星知识达人网友:几近狂妄
- 2021-05-03 05:45
证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,
可证得△MDE≌△MFC,
∴DM=FM,DE=FC,
∴AD=ED=FC,
作AN⊥EC于点N,
由已知∠ADE=90°,∠ABC=90°,
可证得∠1=∠2,∠3=∠4,
∵CF∥ED,
∴∠1=∠FCM,
∴∠BCF=∠4+∠FCM=∠3+∠1=∠3+∠2=∠BAD,
∴△BCF≌△BAD,
∴BF=BD,∠5=∠6,
∴∠DBF=∠5+∠ABF=∠6+∠ABF=∠ABC=90°,
∴△DBF是等腰直角三角形,
∵点M是DF的中点,
∴△BMD是等腰直角三角形.
可证得△MDE≌△MFC,
∴DM=FM,DE=FC,
∴AD=ED=FC,
作AN⊥EC于点N,
由已知∠ADE=90°,∠ABC=90°,
可证得∠1=∠2,∠3=∠4,
∵CF∥ED,
∴∠1=∠FCM,
∴∠BCF=∠4+∠FCM=∠3+∠1=∠3+∠2=∠BAD,
∴△BCF≌△BAD,
∴BF=BD,∠5=∠6,
∴∠DBF=∠5+∠ABF=∠6+∠ABF=∠ABC=90°,
∴△DBF是等腰直角三角形,
∵点M是DF的中点,
∴△BMD是等腰直角三角形.
全部回答
- 1楼网友:神的生死簿
- 2021-05-03 06:44
过点C作CF∥ED,与DM的延长线交于点F,连接BF,
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯