直线y=kx+2与曲线y=根号(-x^2+2x) (0≤x≤2)存在两个交点,则实数k的取值范围是
答案:2 悬赏:20 手机版
解决时间 2021-03-23 08:45
- 提问者网友:火车头
- 2021-03-22 23:54
直线y=kx+2与曲线y=根号(-x^2+2x) (0≤x≤2)存在两个交点,则实数k的取值范围是
最佳答案
- 五星知识达人网友:逃夭
- 2021-03-23 01:26
解:由曲线方程y=根号(-x^2+2x) (0≤x≤2)可得:(x-1)^2+y^2=1其中0≤x≤2,0≤y≤1因此该曲线为圆:(x-1)^2+y^2=1在x轴上方的半圆,又直线y=kx+2过定点(0,2),因此数形结合可得到实数k的取值范围为[-1,-3/4).
注:数形结合是解决问题的关键。
注:数形结合是解决问题的关键。
全部回答
- 1楼网友:笑迎怀羞
- 2021-03-23 02:16
解:由曲线方程y=根号(-x^2+2x) (0≤x≤2)可得:(x-1)^2+y^2=1其中0≤x≤2,0≤y≤1因此该曲线为圆:(x-1)^2+y^2=1在x轴上方的半圆,又直线y=kx+2过定点(0,2),因此数形结合可得到实数k的取值范围为[-1,-3/4).
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯