设a>0,集合A={x||x|≥2},B={x|(x-2a)(x+3)<0}.
(Ⅰ)当a=3时,求集合A∩B;
(Ⅱ)若A∪B=R,求实数a的取值范围.
设a>0,集合A={x||x|≥2},B={x|(x-2a)(x+3)<0}.(Ⅰ)当a=3时,求集合A∩B;(Ⅱ)若A∪B=R,求实数a的取值范围.
答案:2 悬赏:70 手机版
解决时间 2021-01-02 17:09
- 提问者网友:雨不眠的下
- 2021-01-02 01:54
最佳答案
- 五星知识达人网友:像个废品
- 2021-01-02 02:37
解:(Ⅰ)因为集合A={x||x|≥2}={x|x≥2,或x≤-2},…
集合B={x|(x-6)(x+3)<0}={x|-3<x<6},…
所以?A∩B={x|-3<x≤-2,或2≤x<6}.…
(Ⅱ)解:因为?A∪B=R,所以?2a≥2,…
解得?a≥1.…
注:第(Ⅱ)问中没有等号扣.解析分析:(I)解绝对值不等式求出集合A,解一元二次不等式求出集合B,根据两个集合的交集的定义求出A∩B.
(II)直接由题意:“A∪B=R”可得2a≥2,从而得到实数a取值范围.点评:本题主要考查分式不等式、一元二次不等式的解法,两个集合的交集、并集的定义和求法,考查集合关系中参数的取值范围问题,属于中档题.
集合B={x|(x-6)(x+3)<0}={x|-3<x<6},…
所以?A∩B={x|-3<x≤-2,或2≤x<6}.…
(Ⅱ)解:因为?A∪B=R,所以?2a≥2,…
解得?a≥1.…
注:第(Ⅱ)问中没有等号扣.解析分析:(I)解绝对值不等式求出集合A,解一元二次不等式求出集合B,根据两个集合的交集的定义求出A∩B.
(II)直接由题意:“A∪B=R”可得2a≥2,从而得到实数a取值范围.点评:本题主要考查分式不等式、一元二次不等式的解法,两个集合的交集、并集的定义和求法,考查集合关系中参数的取值范围问题,属于中档题.
全部回答
- 1楼网友:第四晚心情
- 2021-01-02 03:11
我好好复习下
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯